

Pin Description

Pin Name	Description
IA_n - IL_n	Data Inputs
S	Select Inputs
En	Enable
Y_A - Y_L	Data Outputs
GND	Ground
V _{CC}	Power
NC	No Connect

Truth Table⁽¹⁾

En	Sn	YA ⁽²⁾	YB ⁽²⁾	YC ⁽²⁾	YD ⁽²⁾	Function
Н	X	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Disable
L	L	$_{\rm I}A_0$	$_{ m I}{ m B}_0$	$_{\rm I}{\rm C}_{\rm 0}$	$_{ m I}{ m D}_0$	S = 0
L	Н	$_{\rm I}A_{\rm 1}$	_I B ₁	_I C ₁	$_{ m I}{ m D}_{ m 1}$	S = 1

Notes:

- H = High Voltage Level, L = Low Voltage Level
- 2. n = 0 YA, YB, YC, YD, n = 1 YE, YF, YG, YH,
 - n = 2 YI, YJ, YK, YL

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

,	 	
Storage Temperature	 –65°C to +15	0°C
Ambient Temperature with Power Applied	 40°C to +8	5°C
Supply Voltage to Ground Potential	 0.5V to +4	.6V
DC Input Voltage	 0.5V to +4	.6V
DC Output Current	 120)mA
Power Dissipation	 0	.5W

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 3.3V \pm 5\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	·
I_{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$			±50	
I_{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μА
I _{OZH}	High Impedance Output Current	$0 \le I, Y \le V_{CC}$			±50	μπ
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$			-1.2	V
D	Switch On-Resistance ⁽³⁾	$V_{CC} = Min., V_{IN} = 0.0V, I_{ON} = 48mA \text{ or } 64mA$		5	7	Ω
R _{ON}	Switch On-Resistance	$V_{CC} = Min., V_{IN} = 2.4V, I_{ON} = 15mA$		10	15	

2

Capacitance ($T_A = 25$ °C, f = 1 MHz)

Parameters ⁽⁴⁾	Description	Test Conditions	Тур.	Max.	Units
C_{IN}	Input Capacitance		3.0		
C_{OFF}	In/Yn Capacitance, Switch Off	$V_{IN} = 0V$	17.0		pF
C _{ON}	In/Yn Capacitance, Switch On		25.0		

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$ ambient and maximum loading.
- 3. Measured by the voltage drop between I and Y pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (I,Y) pins.
- 4. This parameter is determined by device characterization but is not production tested.

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Units
I _{CC}	Quiescent Power Supply Current	$V_{CC} = Max.$	$V_{IN} = GND \text{ or } V_{CC}$		0.1	9.0	4
ΔI_{CC}	Supply Current per Input @ TTL HIGH	$V_{CC} = Max.$	$V_{IN} = 3.0V^{(3)}$			750	μΑ

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 3.3V$, +25°C ambient.
- 3. Per TTL driven input ($V_{IN} = 3.4V$, control inputs only); I and Y pins do not contribute to I_{CC}.

Switching Characteristics over Operating Range

Danamatana	Description	Test Conditions ⁽¹⁾	Con	Com.		Units
Parameters	Description	rest Conditions\	Min.	Max.	Units	
t_{IY}	Propagation Delay ^(2,3) In to Yn			0.25		
t_{SY}	Bus Select Time Sn to Yn	$C_L = 50 pF$	1	4.5		
t _{PZH} t _{PZL}	Bus Disable Time E to Yn	$R_{\rm L} = 500\Omega$	1	4.5	ns	
t _{PHZ} t _{PLZ}	Bus Disable Time Ē to Yn		1	4.8		

Notes:

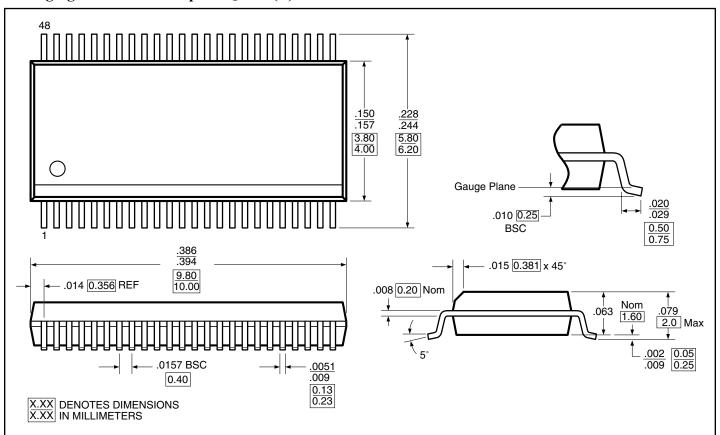
- 1. See test circuit and waveforms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for 50pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

3

PS8334D 11/01/04

Applications Information

Logic Inputs


The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, IN may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail® minimizes power consumption.

Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registeredtrademark of Nippon Motorola, Ltd.

Packaging Mechanical: 48-pin BQSOP (B)

Ordering Information

Ordering Code	Packaging Code	Package Description
PI3B33X257B	В	48-pin BQSOP
PI3B33X257BE	В	Pb-free & Green, 48-pin BQSOP

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. X = Tape and Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

11/01/04