

General-Purpose I/O Port

This series can use its pins as general-purpose I/O ports when they are not used for peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated to.

- ■Capable of pull-up control per pin
- ■Capable of reading pin level directly
- ■Built-in the port relocate function
- ■Up to 84 high-speed general-purpose I/O Ports@100 pin Package
- ■Some ports are 5 V tolerant I/O See List of Pin Functions and I/O Circuit Type to confirm the corresponding pins.

Multi-function Timer

The Multi-function timer is composed of the following blocks.

- ■16-bit free-run timer × 3ch.
- ■Input capture × 4ch.
- ■Output compare × 6ch.
- ■A/D activation compare × 1ch.
- ■Waveform generator × 3ch.
- ■16-bit PPG timer × 3ch. IGBT mode is contained

The following function can be used to achieve the motor control.

- ■PWM signal output function
- ■DC chopper waveform output function
- ■Dead time function
- ■Input capture function
- ■A/D convertor activate function
- ■DTIF (Motor emergency stop) interrupt function

HDMI-CEC/Remote Control Receiver (Up to 2 channels)

HDMI- CEC receiver / Remote control receiver

- Operating modes supporting the following standards can be selected
 - □ SIRCS
 - □ NEC/Association for Electric Home Appliances □ HDMI-CFC
- Capable of adjusting detection timings for start bit and data bit
- ■Equipped with noise filter

HDMI-CEC transmitter

- Header block automatic transmission by judging Signal free
- ■Generating status interrupt by detecting Arbitration lost
- ■Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data
- Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK)

Real-time clock (RTC)

The Real-time clock can count Year/Month/Day/Hour/Minute/Second/A day of the week from 00 to 99.

- ■The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute.
- ■Timer interrupt function after set time or each set time.
- Capable of rewriting the time with continuing the time count.
- ■Leap year automatic count is available.

External Interrupt Controller Unit

- ■Up to 16 external interrupt input pins
- ■Include one non-maskable interrupt (NMI) input pin

Watchdog Timer (2 channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.

This series consists of two different watchdogs, a Hardware watchdog and a Software watchdog.

The Hardware watchdog timer is clocked by the built-in Low-speed CR oscillator. Therefore, the Hardware watchdog is active in any low-power consumption mode except RTC, Stop, Deep Standby RTC and Deep Standby Stop modes.

Clock and Reset

[Clocks]

Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL).

■Main Clock: 4 MHz to 20 MHz

■Sub Clock: 32.768 kHz

■Built-in High-speed CR Clock: 4 MHz

■Built-in Low-speed CR Clock: 100 kHz

■Main PLL Clock

[Resets]

- ■Reset requests from INITX pin
- ■Power-on reset
- ■Software reset
- ■Watchdog timers reset
- ■Low-voltage detection reset
- ■Clock Super Visor reset

Clock Super Visor (CSV)

Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.

- If external clock failure (clock stop) is detected, reset is asserted.
- If external frequency anomaly is detected, interrupt or reset is asserted.

Low-Voltage Detector (LVD)

This Series includes 2-stage monitoring of voltage on the VCC. When the voltage falls below the voltage that has been set, Low-Voltage Detector generates an interrupt or reset.

- ■LVD1: error reporting via interrupt
- ■LVD2: auto-reset operation

Low-Power Consumption Mode

Six low-power consumption modes supported.

- ■Sleep
- **■**Timer
- **■**RTC
- ■Stop
- ■Deep Standby RTC
- ■Deep Standby Stop

The back up register is 16 bytes.

Debug

Serial Wire JTAG Debug Port (SWJ-DP)

Power Supply

Wide range voltage: VCC = 1.8 V to 5.5 V

Contents

1. Product Lineup	6
2. Packages	7
3. Pin Assignment	
4. List of Pin Functions	
5. I/O Circuit Type	
6. Handling Precautions	
6.1 Precautions for Product Design	
6.2 Precautions for Package Mounting	
6.3 Precautions for Use Environment	
7. Handling Devices	
8. Block Diagram	
9. Memory Size	
10. Memory Map	
11. Pin Status in Each CPU State	
12. Electrical Characteristics	
12.1 Absolute Maximum Ratings	
12.2 Recommended Operating Conditions	
12.3 DC Characteristics	
12.3.1 Current Rating	
12.3.2 Pin Characteristics	
12.4 AC Characteristics	
12.4.1 Main Clock Input Characteristics	
12.4.2 Sub Clock Input Characteristics	
12.4.3 Built-in CR Oscillation Characteristics	
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL)	
12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock of the	
PLL)	
12.4.6 Reset Input Characteristics	
12.4.7 Power-on Reset Timing	
· · · · · · · · · · · · · · · · · · ·	
12.4.8 Base Timer Input Timing	
G	
12.4.10 External Input Timing	
·	
12.4.12 JTAG Timing	
12.6 10-bit D/A Converter	_
12.7 Low-Voltage Detection Characteristics	
12.7.1 Low-Voltage Detection Reset	
12.7.2 Interrupt of Low-Voltage Detection	
12.8 Flash Memory Write/Erase Characteristics	
12.8.1 Write / Erase time	
12.8.2 Write cycles and data hold time	
12.9 Return Time from Low-Power Consumption Mode	
12.9.1 Return Factor: Interrupt/WKUP	
12.9.2 Return Factor: Reset	
13. Ordering Information	
14. Package Dimensions	88

15. Er	rata	94
	Part Numbers Affected	
	Qualification Status	
	Errata Summary	
	Errata Detail	
	HDMI-CEC polling message issue	
	RTC delay issue	
Major	Changes	96
Docui	ment History	98
Sales	, Solutions, and Legal Information	99

1. Product Lineup

Memory size

Product name		MB9AF1A1L/M/N	MB9AF1A2L/M/N	
On-chip Flash memory		64 Kbytes	128 Kbytes	
On-chip SRAM SRAM1		12 Kbytes	16 Kbytes	

Function

Product name			MB9AF1A1L MB9AF1A2L	MB9AF1A1M MB9AF1A2M	MB9AF1A1N MB9AF1A2N				
Pin count			64	80	100				
			Cortex-M3						
CPU	Freq.			20 MHz					
Power	supply voltage r	ange		1.8 V to 5.5 V					
	inction Serial Int (CSIO/I ² C)	erface		8ch. (Max)					
Base T (PWC/	imer Reload timer/P\	NM/PPG)		8ch. (Max)					
	A/D activation compare	1ch.							
	Input capture	4ch.							
	Free-run time	r 3ch.	1 unit (Max)						
Timer c	Output compare	6ch.							
	Waveform generator	3ch.							
	PPG (IGBT mode)	3ch.							
HDMI-0 Receive	CEC/ Remote C er	ontrol	2ch. (Max)						
Real-tir	me clock (RTC)		1 unit						
Watcho	log timer			1ch. (SW) + 1ch. (HW)					
Externa	al Interrupts		8 pins (Max)+ NMI × 1	11 pins (Max)+ NMI × 1	16 pins (Max)+ NMI × 1				
Genera	ıl-purpose I/O p	orts	52 pins (Max)	67 pins (Max)	84 pins (Max)				
12-bit <i>A</i>	VD converter		9ch. (1 unit)	12ch. (1 unit)	16ch. (1 unit)				
10-bit E	D/A converter			2ch. (Max)					
CSV (C	lock Super Visc	or)	Yes						
LVD (L	ow-Voltage Dete	ector)	2ch.						
Duilt in	CB High-	-speed		4 MHz					
Built-in CR Low-speed		speed	100 kHz						
Debug	Function		SWJ-DP						

Note:

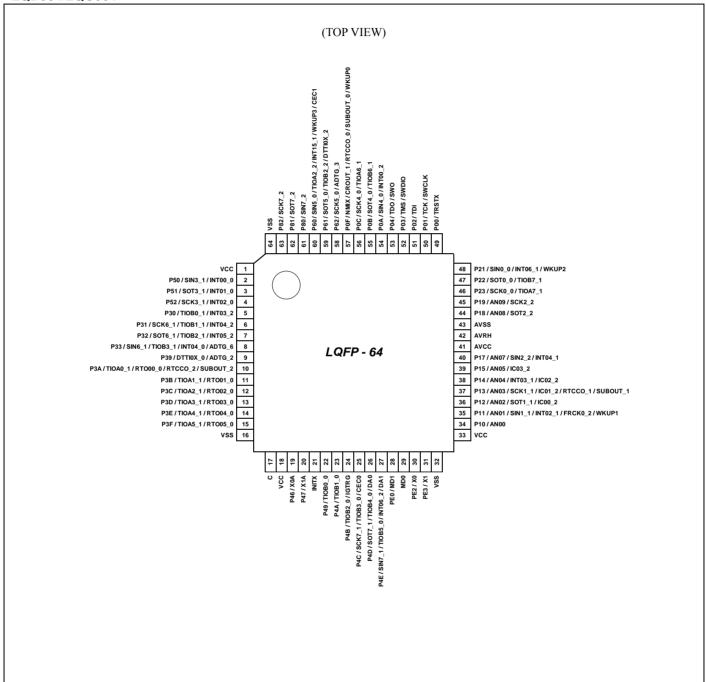
All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
 It is necessary to use the port relocate function of the I/O port according to your function use.
 See Electrical Characteristics 12.4 AC Characteristics 12.4.3 Built-in CR Oscillation Characteristics for accuracy of built-in CR.

2. Packages

Package	Product name	MB9AF1A1L MB9AF1A2L	MB9AF1A1M MB9AF1A2M	MB9AF1A1N MB9AF1A2N
LQFP:	LQD064 (0.5mm pitch)	0	-	-
LQFP:	LQG064 (0.65mm pitch)	O	-	-
LQFP:	LQH080 (0.5mm pitch)	-	0	-
LQFP:	LQJ080 (0.65mm pitch)	-	0	-
LQFP:	LQI100 (0.5mm pitch)	-	-	0
QFP:	PQH100 (0.65mm pitch)	-	-	O

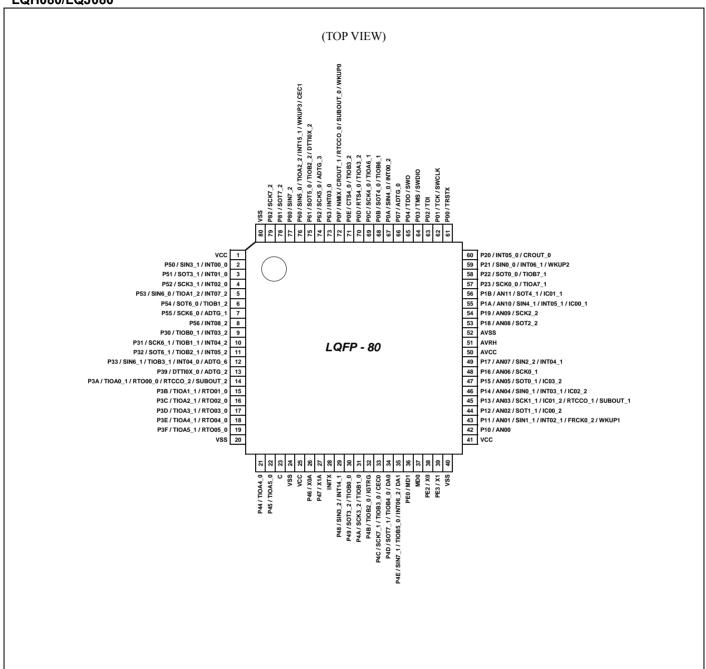
O: Supported

Note:

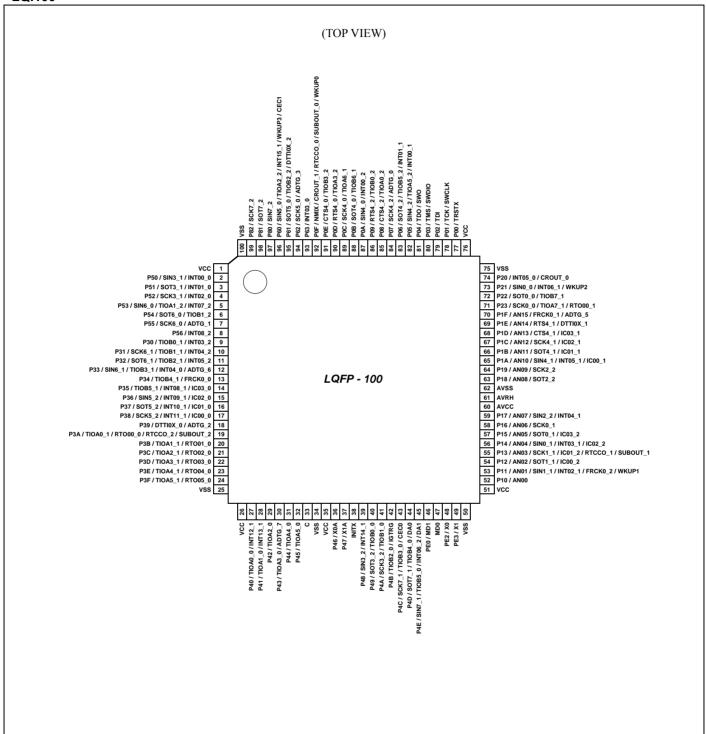

- See Package Dimensions for detailed information on each package.

Document Number: 002-05675 Rev.*D Page 7 of 99

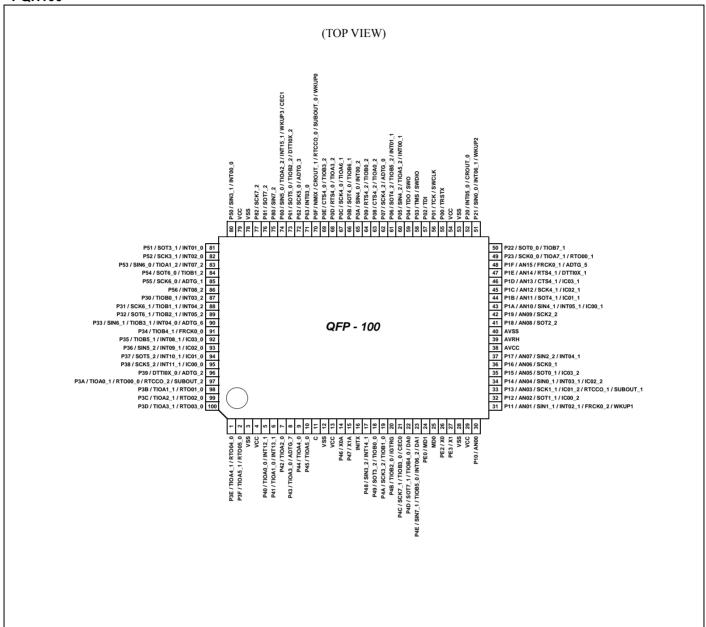
3. Pin Assignment


LQD064/LQG064

Note:


LQH080/LQJ080

Note:


LQI100

Note:

PQH100

Note:

4. List of Pin Functions

List of pin numbers

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

Pin No				Pin name	I/O circuit	Pin state
LQFP-64	LQFP-80	LQFP-100	QFP-100		type	type
1	1	1	79	VCC	-	1
				P50		
2	2	2	80	INT00_0	E	F
				SIN3_1		
				P51		
3	3	3	81	INT01_0	E	F
5			01	SOT3_1		
				(SDA3_1)		
				P52		
4	4	4	82	INT02_0	E	F
				SCK3_1 (SCL3_1)		
				P53		
	_	_		SIN6_0		F
-	5	5	83	TIOA1_2	─ E	
				INT07_2		
				P54		Н
		6	84	SOT6_0		
-	6			(SDA6_0)	E	
				TIOB1_2		
				P55		н
_	7	7	85	SCK6_0	E	
_	'	'	00	(SCL6_0)		
				ADTG_1		
_	8	8	86	P56	— Е	0
		ŭ	00	INT08_2		Ŭ
				P30		
5	9	9	87	TIOB0_1	E	F
				INT03_2		
				P31		
				TIOB1_1		
6	10	10	88	SCK6_1	E	F
				(SCL6_1)		
				INT04_2		
				P32		
				TIOB2_1		
7	11	11 11	89	SOT6_1	E	F
				(SDA6_1)		
				INT05_2		

	Pin	No		Dia	I/O circuit	Pin state
LQFP-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	type
				P33		
				INT04_0		
8	12	12	90	TIOB3_1	E	F
				SIN6_1		
				ADTG_6		
				P34		
-	-	13	91	FRCK0_0	E	Н
				TIOB4_1		
				P35		
_	_	14	92	IC03_0	E	F
			02	TIOB5_1		
				INT08_1		
				P36		
_	_	15	93	IC02_0	E	F
			93	SIN5_2		
				INT09_1		
				P37		F
	-		94	IC01_0	E	
-		16		SOT5_2 (SDA5_2)		
				INT10_1		
		17	95	P38	E	F
				IC00_0		
-	-			SCK5_2 (SCL5_2)		
				INT11_1		
				P39		
9	13	18	96	DTTI0X_0	T _E	Н
				ADTG_2	1 =	
				P3A		
				RTO00_0]	
10	14	19	97	(PPG00_0)	E	Н
10	14	19	31	TIOA0_1		''
				RTCCO_2		
				SUBOUT_2		
				P3B		
11	15	20	98	RTO01_0 (PPG00_0)	E	н
				TIOA1_1	1	
				P3C		
12	16	21	99	RTO02_0 (PPG02_0)	E	Н
				TIOA2_1		

	Pir	ı No			I/O circuit	Pin state
LQFP-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	type
				P3D		
13	17	22	100	RTO03_0	E	Н
				(PPG02_0)		
				TIOA3_1		
				P3E		
14	18	23	1	RTO04_0 (PPG04_0)	E	Н
				TIOA4_1		
				P3F		
15	19	24	2	RTO05_0	E	Н
10			_	(PPG04_0)		
				TIOA5_1		
16	20	25	3	VSS	-	
-	-	26	4	VCC	-	1
				P40		
-	-	27	5	TIOA0_0	E	F
				INT12_1		
				P41		F
-	-	28	6	TIOA1_0	E	
				INT13_1		
_	_	29	7	P42	⊣	Н
		20	'	TIOA2_0		
				P43		
-	-	30	8	TIOA3_0	E	Н
				ADTG_7		
_	21	31	9	P44	E	Н
-	21	31	9	TIOA4_0		11
_	22	32	10	P45	E	Н
	22	32	10	TIOA5_0		11
17	23	33	11	С	-	
1	24	34	12	VSS	-	
18	25	35	13	VCC	-	
19	26	36	14	P46	D	M
19	26	30	14	X0A		M
20	27	27	15	P47	D	N
20		37	10	X1A		N
21	28	38	16	INITX	В	С
				P48		
-	29	39	17	INT14_1	E	F
				SIN3_2		

	Pir	ı No			I/O circuit	Pin state
LQFP-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	type
22				P49		
	30	40	18	TIOB0_0	E	H
-				SOT3_2 (SDA3_2)		
23				P4A		
23	31	41	19	TIOB1_0	E	Н
-			.0	SCK3_2 (SCL3_2)		
				P4B		
24	32	42	20	TIOB2_0	E	Н
				IGTRG		
ı				P4C		
ı				TIOB3_0		
25	33	43	21	SCK7_1 (SCL7_1)	G	Q
				CEC0		
				P4D		Т
			44 22	TIOB4_0		
26	34	44		SOT7_1 (SDA7_1)	J	
				DA0		
	35	45	23	P4E		S
				TIOB5_0		
27				INT06_2	J	
				SIN7_1		
				DA1		
28	36	46	24	PE0	С	Р
20	30	40	24	MD1		P
29	37	47	25	MD0	Н	D
30	38	48	26	PE2	A	Α
	30	70	20	X0		Α
31	39	49	27	PE3	A	В
		40	21	X1		
32	40	50	28	VSS	-	
33	41	51	29	VCC	-	1
34	42	52	30	P10	— F	J
				AN00		
				P11		
				AN01		
35	43	53	31	SIN1_1	F	L
50				INT02_1		
				FRCK0_2		
				WKUP1		

	Pin	No			I/O circuit	Pin state
LQFP-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	type
				P12		
				AN02		
36	44	54	32	SOT1_1	F	J
				(SDA1_1)		
				IC00_2		
				P13		
				AN03		
				SCK1_1		
37	45	55	33	(SCL1_1)	F	J
				IC01_2		
				RTCCO_1		
				SUBOUT_1		
				P14		
38				AN04		К
	46	56	34	IC02_2	F	
				INT03_1		
-				SIN0_1		
				P15		J
39		57	35	AN05		
	47			IC03_2	F	
_				SOT0_1		
				(SDA0_1)		
			36	P16		
_	48	58		AN06	F	J
	10	30		SCK0_1		
				(SCL0_1)		
				P17		
40	49	59	37	AN07	— F	К
				SIN2_2		
				INT04_1		
41	50	60	38	AVCC	-	
42	51	61	39	AVRH	-	
43	52	62	40	AVSS	-	1
				P18		
44	53	63	41	AN08	F	J
				SOT2_2	-	
				(SDA2_2)		
				P19		J
45	54	64	42	AN09	F	
	J 4			SCK2_2		
				(SCL2_2)		

	Pin	No			I/O circuit	Pin state
LQFP-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	type
				P1A		
				AN10		
-	55	65	43	SIN4_1	F	K
				INT05_1		
				IC00_1		
				P1B		
				AN11		
-	56	66	44	SOT4_1	F	J
				(SDA4_1)	_	
				IC01_1		
				P1C	_	
				AN12		
-	-	67	45	SCK4_1	F	J
				(SCL4_1)	4	
				IC02_1		
				P1D	_	J
-	-	- 68	46	AN13	F -	
				CTS4_1		
				IC03_1		
		- 69	47	P1E	F	
-	-			AN14		J
				RTS4_1		
				DTTI0X_1		
				P1F	_	J
-	-	70	48	AN15	F -	
				ADTG_5		
				FRCK0_1		
				P23	_	
46	57			SCK0_0	E	н
		71	49	(SCL0_0)		
-	-			TIOA7_1 RTO00_1	-	
	-					
				P22 SOT0_0		
47	58	72	50	(SDA0_0)	E	Н
				TIOB7_1		
				P21		
				SINO_0		
48	59	73	51	INT06_1	E -	G
				WKUP2		
				P20		
_	60	74	52	INT05_0	E	F
	00	/4		CROUT_0		'
	1			1 0.1001_0		<u> </u>

Pin No				D .	I/O circuit	Pin state
LQFP-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	type
-	-	75	53	VSS	-	
-	-	76	54	VCC	-	
49	61	77	55	P00	E	E
49	01	77	55	TRSTX		
				P01		
50	62	78	56	TCK	E	E
				SWCLK		
51	63	79	57	P02	— Е	E
	00	7.5	37	TDI		-
				P03		
52	64	80	58	TMS	E	E
				SWDIO		
				P04		
53	65	81	59	TDO	E	E
				SWO		
				P05		
		00	60	TIOA5_2	E	F
-	-	82	60	SIN4_2		F
				INT00_1		
				P06		F
		83	61	TIOB5_2	E	
-	-			SOT4_2		
				(SDA4_2)		
				INT01_1		
	66			P07		
_	00	84	62	ADTG_0	E	н
	_] 04	02	SCK4_2	_	"
				(SCL4_2)		
				P08		
-	-	85	63	TIOA0_2	E	Н
				CTS4_2		
				P09		
-	-	86	64	TIOB0_2	E	Н
				RTS4_2		
				P0A		
54	67	87	65	SIN4_0	G	F
				INT00_2		
				P0B		
55	68	88	66	SOT4_0	G	н
-				(SDA4_0)		
	<u> </u>			TIOB6_1		
				P0C		
56	69	89	67	SCK4_0	G	Н
50 08				(SCL4_0)		
				TIOA6_1		

	Р	in No			I/O circuit	Pin state
LQFP-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	type
				P0D		
-	70	90	68	RTS4_0	E	Н
				TIOA3_2		
				P0E		
-	71	91	69	CTS4_0	E	Н
				TIOB3_2		
				P0F		
				NMIX		
F-7	70	00	70	CROUT_1]_	
57	72	92	70	RTCCO_0	- E	I
				SUBOUT_0		
				WKUP0		
	70	00	7.4	P63	_	
-	73	93	71	INT03_0	E	0
				P62		
58	74	94	72	SCK5_0	E	Н
30	/4			(SCL5_0)		' '
				ADTG_3		
				P61		н
				SOT5_0		
59	75	95	73	(SDA5_0)	E	
				TIOB2_2	<u> </u>	
				DTTI0X_2		
				P60		
				SIN5_0		
60	76	96	74	TIOA2_2	G	R
				INT15_1		
				WKUP3		
				CEC1		
61	77	97	75	P80	G	Н
				SIN7_2		
62	70	00	76	P81	1	
62	78	98	76	SOT7_2 (SDA7_2)	G	Н
				P82		1
63	79	99	77	SCK7_2	G	Н
				(SCL7_2)		
64	80	100	78	VSS	-	1
				1	1	

List of pin functions

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

Pin	Pin name	Function description			No	
function	riii iiaiile	runction description	LQFP-64	LQFP-80	LQFP-100	QFP-100
ADC	ADTG_0		-	66	84	62
	ADTG_1		-	7	7	85
	ADTG_2		9	13	18	96
	ADTG_3		58	74	94	72
	ADTG_4	A/D converter external trigger input pin	-	-	-	-
	ADTG_5		-	-	70	48
	ADTG_6		8	12	12	90
	ADTG_7		-	-	30	8
	ADTG_8		-	-	-	-
	AN00		34	42	52	30
	AN01		35	43	53	31
	AN02		36	44	54	32
	AN03		37	45	55	33
	AN04		38	46	56	34
	AN05		39	47	57	35
	AN06		-	48	58	36
	AN07	A/D converter analog input pin.	40	49	59	37
	AN08	ANxx describes ADC ch.xx.	44	53	63	41
	AN09		45	54	64	42
	AN10		-	55	65	43
	AN11		-	56	66	44
	AN12		-	-	67	45
	AN13		-	-	68	46
	AN14		-	-	69	47
	AN15]	-	-	70	48

Document Number: 002-05675 Rev.*D Page 20 of 99

Pin	D:	Francisco de conjustico		Pir	n No		
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100	
Base Timer	TIOA0_0		-	-	27	5	
0	TIOA0_1	Base timer ch.0 TIOA pin	10	14	19	97	
	TIOA0_2		-	-	85	63	
	TIOB0_0		22	30	40	18	
	TIOB0_1	Base timer ch.0 TIOB pin	5	9	9	87	
	TIOB0_2		-	-	86	64	
Base Timer	TIOA1_0		-	-	28	6	
1	TIOA1_1	Base timer ch.1 TIOA pin	11	15	20	98	
	TIOA1_2		-	5	5	83	
	TIOB1_0		23	31	41	19	
	TIOB1_1	Base timer ch.1 TIOB pin	6	10	10	88	
	TIOB1_2		-	6	6	84	
Base Timer	TIOA2_0		-	-	29	7	
2	TIOA2_1	Base timer ch.2 TIOA pin	12	16	21	99	
	TIOA2_2		60	76	96	74	
	TIOB2_0		24	32	42	20	
	TIOB2_1	Base timer ch.2 TIOB pin	7	11	11	89	
	TIOB2_2		59	75	95	73	
Base Timer	TIOA3_0		-	-	30	8	
3	TIOA3_1	Base timer ch.3 TIOA pin	13	17	22	100	
	TIOA3_2		-	70	90	68	
	TIOB3_0		25	33	43	21	
	TIOB3_1	Base timer ch.3 TIOB pin	8	12	12	90	
	TIOB3_2		-	71	91	69	
Base Timer	TIOA4_0		-	21	31	9	
4	TIOA4_1	Base timer ch.4 TIOA pin	14	18	23	1	
	TIOA4_2		-	-	-	-	
	TIOB4_0		26	34	44	22	
	TIOB4_1	Base timer ch.4 TIOB pin	-	-	13	91	
	TIOB4_2		-	-	-	-	
Base Timer	TIOA5_0		-	22	32	10	
5	TIOA5_1	Base timer ch.5 TIOA pin	15	19	24	2	
	TIOA5_2		-	-	82	60	
	TIOB5_0		27	35	45	23	
	TIOB5_1	Base timer ch.5 TIOB pin	-	-	14	92	
	TIOB5_2		-	-	83	61	
Base Timer 6	TIOA6_1	Base timer ch.6 TIOA pin	56	69	89	67	
	TIOB6_1	Base timer ch.6 TIOB pin	55	68	88	66	
Base Timer	TIOA7_0		-	-	-	-	
7	TIOA7_1	Base timer ch.7 TIOA pin	46	57	71	49	
	TIOA7_2		-	-	-	-	
	TIOB7_0		-	-	-	-	
	TIOB7_1	Base timer ch.7 TIOB pin	47	58	72	50	
	TIOB7_2		-	-	-	-	

Pin	Din nome	Function description	Pin No			
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100
Debugger	SWCLK	Serial wire debug interface clock input pin	50	62	78	56
	SWDIO	Serial wire debug interface data input / output pin	52	64	80	58
	SWO	Serial wire viewer output pin	53	65	81	59
	TRSTX	JTAG reset input pin	49	61	77	55
	TCK	JTAG test clock input pin	50	62	78	56
	TDI	JTAG test data input pin	51	63	79	57
	TMS	JTAG test mode state input/output pin	52	64	80	58
	TDO	JTAG debug data output pin	53	65	81	59
External	INT00_0		2	2	2	80
Interrupt	INT00_1	External interrupt request 00 input pin	-	-	82	60
	INT00_2		54	67	87	65
	INT01_0	External interrupt request 01 input pin	3	3	3	81
	INT01_1	External interrupt request or input pin	-	-	83	61
	INT02_0	External interrupt request 02 input pin	4	4	4	82
	INT02_1	External interrupt request 02 input pin	35	43	53	31
	INT03_0		-	73	93	71
	INT03_1	External interrupt request 03 input pin	38	46	56	34
	INT03_2		5	9	9	87
	INT04_0	External interrupt request 04 input pin	8	12	12	90
	INT04_1		40	49	59	37
	INT04_2		6	10	10	88
	INT05_0		-	60	74	52
	INT05_1	External interrupt request 05 input pin	-	55	65	43
	INT05_2		7	11	11	89
	INT06_1	External interrupt request 06 input pin	48	59	73	51
	INT06_2	External interrupt request oo input pin	27	35	45	23
	INT07_2	External interrupt request 07 input pin	-	5	5	83
	INT08_1	External interrupt request 08 input pin	-	-	14	92
	INT08_2	External interrupt request 00 input pin	-	8	8	86
	INT09_1	External interrupt request 09 input pin	-	-	15	93
	INT10_1	External interrupt request 10 input pin	-	-	16	94
	INT11_1	External interrupt request 11 input pin	-	-	17	95
	INT12_1	External interrupt request 12 input pin	-	-	27	5
	INT13_1	External interrupt request 13 input pin	-	-	28	6
	INT14_1	External interrupt request 14 input pin	-	29	39	17
	INT15_1	External interrupt request 15 input pin	60	76	96	74
	NMIX	Non-Maskable Interrupt input pin	57	72	92	70

Pin	Din nome	Function description		Р	in No	
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100
GPIO	P00		49	61	77	55
	P01		50	62	78	56
	P02		51	63	79	57
	P03		52	64	80	58
	P04		53	65	81	59
	P05		-	-	82	60
	P06		-	-	83	61
	P07	Conoral numbers I/O port 0	-	66	84	62
	P08	General-purpose I/O port 0	-	-	85	63
	P09		-	-	86	64
	P0A	1	54	67	87	65
	P0B		55	68	88	66
	P0C	1	56	69	89	67
	P0D	7	-	70	90	68
	P0E	7	-	71	91	69
	P0F	7	57	72	92	70
	P10		34	42	52	30
	P11	7	35	43	53	31
	P12	7	36	44	54	32
	P13		37	45	55	33
	P14		38	46	56	34
	P15	7	39	47	57	35
	P16	1	-	48	58	36
	P17]	40	49	59	37
	P18	General-purpose I/O port 1	44	53	63	41
	P19	1	45	54	64	42
	P1A	1	-	55	65	43
	P1B	1	-	56	66	44
	P1C	1	-	-	67	45
	P1D	1	-	-	68	46
	P1E	1	-	-	69	47
	P1F	1	-	-	70	48
	P20		-	60	74	52
	P21	1	48	59	73	51
	P22	General-purpose I/O port 2	47	58	72	50
	P23	1	46	57	71	49

Pin					Pin No	
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100
GPIO	P30		5	9	9	87
	P31		6	10	10	88
	P32		7	11	11	89
	P33		8	12	12	90
	P34		-	-	13	91
	P35		_	_	14	92
	P36		_	_	15	93
	P37		-	-	16	94
	P38	General-purpose I/O port 3	_	-	17	95
	P39		9	13	18	96
	P3A		10	14	19	97
	P3B		11	15	20	98
	P3C		12	16	21	99
	P3D	1	13	17	22	100
	P3E	1	14	18	23	1
	P3F	1	15	19	24	2
	P40		- 15	-	27	5
	P40	-	-	-	28	6
	P42	-	-	-	29	7
		-				
	P43	-	-	-	30	8
	P44	-	-	21	31	9
	P45	-	-	22	32	10
	P46		19	26	36	14
	P47	General-purpose I/O port 4	20	27	37	15
	P48		-	29	39	17
	P49		22	30	40	18
	P4A		23	31	41	19
	P4B		24	32	42	20
	P4C		25	33	43	21
	P4D		26	34	44	22
	P4E		27	35	45	23
	P50		2	2	2	80
	P51		3	3	3	81
	P52		4	4	4	82
	P53	General-purpose I/O port 5	-	5	5	83
	P54		-	6	6	84
	P55		-	7	7	85
	P56		-	8	8	86
	P60		60	76	96	74
	P61	Conoral nurnoss I/O zort 6	59	75	95	73
	P62	General-purpose I/O port 6	58	74	94	72
	P63]	-	73	93	71
	P80		61	77	97	75
	P81	General-purpose I/O port 8	62	78	98	76
	P82	1 ' ' '	63	79	99	77
	PE0		28	36	46	24
	PE2	General-purpose I/O port E	30	38	48	26
	PE3		31	39	49	27

Pin	D:	Formation description	Pin No				
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100	
Multi-	SIN0_0	Multi-function serial interface ch.0 input	48	59	73	51	
function Serial	SIN0_1	pin	-	46	56	34	
0	SOT0_0 (SDA0_0)	Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is used	47	58	72	50	
	SOT0_1 (SDA0_1)	in a UART/CSIO (operation modes 0 to 2) and as SDA0 when it is used in an I ² C (operation mode 4).	-	47	57	35	
	SCK0_0 (SCL0_0)	Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used	46	57	71	49	
	SCK0_1 (SCL0_1)	in a UART/CSIO (operation modes 0 to 2) and as SCL0 when it is used in an I ² C (operation mode 4).	-	48	58	36	
Multi- function	SIN1_1	Multi-function serial interface ch.1 input pin	35	43	53	31	
Serial 1	SOT1_1 (SDA1_1)	Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA1 when it is used in an I ² C (operation mode 4).	36	44	54	32	
	SCK1_1 (SCL1_1)	Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL1 when it is used in an I ² C (operation mode 4).	37	45	55	33	
Multi- function	SIN2_2	Multi-function serial interface ch.2 input pin	40	49	59	37	
Serial 2	SOT2_2 (SDA2_2)	Multi-function serial interface ch.2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA2 when it is used in an I ² C (operation mode 4).	44	53	63	41	
	SCK2_2 (SCL2_2)	Multi-function serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL2 when it is used in an I ² C (operation mode 4).	45	54	64	42	

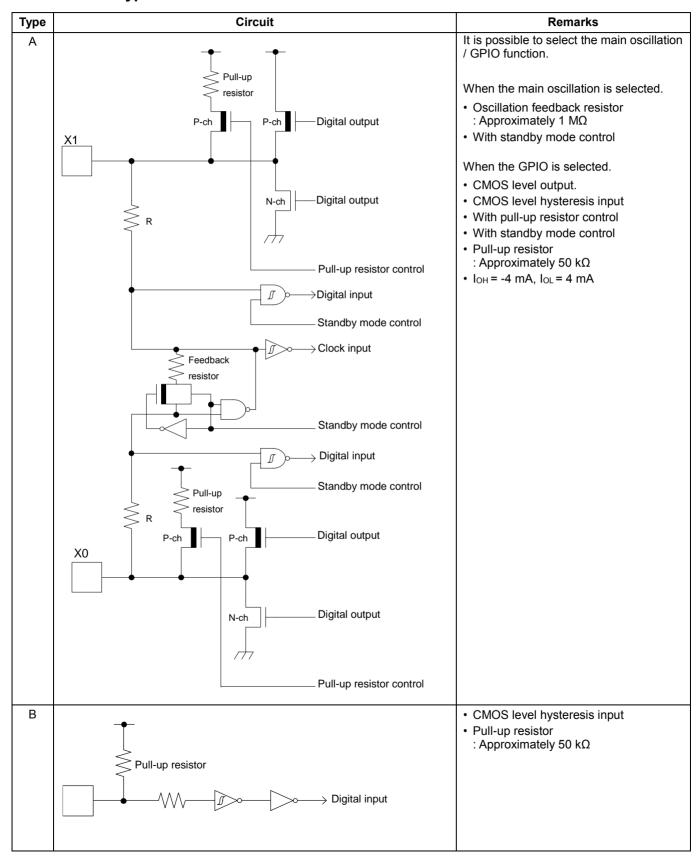
Pin		-		Р	in No	
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100
Multi-	SIN3_1	Multi-function serial interface ch.3 input	2	2	2	80
function Serial	SIN3_2	pin	-	29	39	17
3	SOT3_1 (SDA3_1)	Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is	3	3	3	81
	SOT3_2 (SDA3_2)	used in a UART/CSIO (operation modes 0 to 2) and as SDA3 when it is used in an I ² C (operation mode 4).	-	30	40	18
	SCK3_1 (SCL3_1)	Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL3 when it is used in an I ² C (operation mode 4).	4	4	4	82
	SCK3_2 (SCL3_2)		-	31	41	19
Multi-	SIN4_0		54	67	87	65
function Serial	SIN4_1	Multi-function serial interface ch.4 input pin	-	55	65	43
4	SIN4_2		-	-	82	60
	SOT4_0 (SDA4_0)	Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO (operation modes	55	68	88	66
	SOT4_1 (SDA4_1)		-	56	66	44
	SOT4_2 (SDA4_2)	0 to 2) and as SDA4 when it is used in an I ² C (operation mode 4).	-	-	83	61
	SCK4_0 (SCL4_0)	Multi-function serial interface ch.4 clock I/O pin.	56	69	89	67
	SCK4_1 (SCL4_1)	This pin operates as SCK4 when it is used in a UART/CSIO (operation modes	-	-	67	45
	SCK4_2 (SCL4_2)	0 to 2) and as SCL4 when it is used in an I ² C (operation mode 4).	-	-	84	62
	RTS4_0		-	70	90	68
	RTS4_1	Multi-function serial interface ch.4 RTS output pin	-	-	69	47
	RTS4_2		-	-	86	64
	CTS4_0		-	71	91	69
	CTS4_1	Multi-function serial interface ch.4 CTS	-	-	68	46
	CTS4_2	input pin	-	-	85	63

Pin	Din name	Function description		Piı	n No	
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100
Multi-	SIN5_0	Multi-function serial interface ch.5 input	60	76	96	74
function Serial	SIN5_2	pin	-	-	15	93
5	SOT5_0 (SDA5_0)	Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is	59	75	95	73
	SOT5_2 (SDA5_2)	used in a UART/CSIO (operation modes 0 to 2) and as SDA5 when it is used in an I ² C (operation mode 4).	-	-	16	94
	SCK5_0 (SCL5_0)	Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is	58	74	94	72
	SCK5_2 (SCL5_2)	used in a UART/CSIO (operation modes 0 to 2) and as SCL5 when it is used in an I ² C (operation mode 4).	-	-	17	95
Multi-	SIN6_0	Multi-function serial interface ch.6 input	-	5	5	83
function Serial	SIN6_1	pin	8	12	12	90
6	SOT6_0 (SDA6_0)	Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA6 when it is used in an I ² C (operation mode 4).	-	6	6	84
	SOT6_1 (SDA6_1)		7	11	11	89
	SCK6_0 (SCL6_0)	Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is	-	7	7	85
	SCK6_1 (SCL6_1)	used in a UART/CSIO (operation modes 0 to 2) and as SCL6 when it is used in an I ² C (operation mode 4).	6	10	10	88
Multi-	SIN7_1	Multi-function serial interface ch.7 input	27	35	45	23
function Serial	SIN7_2	pin	61	77	97	75
7	SOT7_1 (SDA7_1)	Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when it is	26	34	44	22
	SOT7_2 (SDA7_2)	used in a UART/CSIO (operation modes 0 to 2) and as SDA7 when it is used in an I ² C (operation mode 4).	62	78	98	76
	SCK7_1 (SCL7_1)	Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is	25	33	43	21
	SCK7_2 (SCL7_2)	used in a UART/CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I ² C (operation mode 4).	63	79	99	77

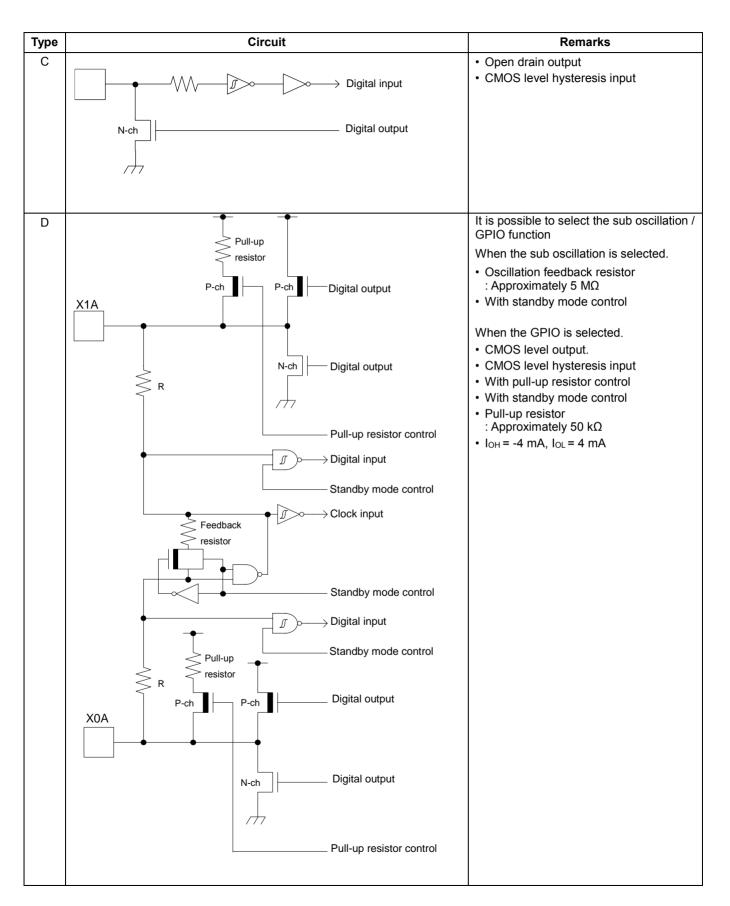
Pin		T	1	Pi	n No		
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100	
Multi-	DTTI0X_0	Input signal of waveform generator to	9	13	18	96	
function Timer	DTTI0X_1	control outputs RTO00 to RTO05 of	-	-	69	47	
0	DTTI0X_2	Multi-function timer 0	59	75	95	73	
	FRCK0_0		-	-	13	91	
	FRCK0_1	16-bit free-run timer ch.0 external clock input pin	-	-	70	48	
	FRCK0_2	- input pin	35	43	53	31	
	IC00_0		-	-	17	95	
	IC00_1]	-	55	65	43	
	IC00_2]	36	44	54	32	
	IC01_0]	-	-	16	94	
	IC01_1]	-	56	66	44	
	IC01_2	16-bit input capture input pin of	37	45	55	33	
	IC02_0	Multi-function timer 0. ICxx describes a channel number.	-	-	15	93	
	IC02_1	TOXX decembed a chamber hamber.	-	-	67	45	
	IC02_2]	38	46	56	34	
	IC03_0	1	-	-	14	92	
	IC03_1]	-	-	68	46	
	IC03_2]	39	47	57	35	
	RTO00_0 (PPG00_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode.	10	14	19	97	
	RTO00_1 (PPG00_1)		-	-	71	49	
	RTO01_0 (PPG00_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode.	11	15	20	98	
	RTO02_0 (PPG02_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode.	12	16	21	99	
	RTO03_0 (PPG02_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode.	13	17	22	100	
	RTO04_0 (PPG04_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode.	14	18	23	1	
	RTO05_0 (PPG04_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode.	15	19	24	2	
	IGTRG	PPG IGBT mode external trigger input pin	24	32	42	20	

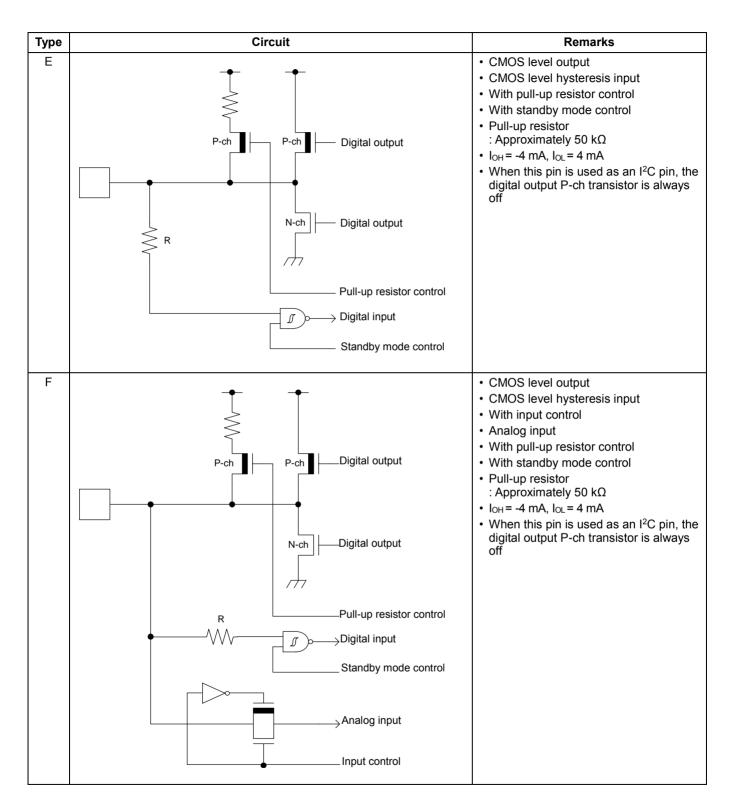
Pin	Din nama	Eurotian description		Pi	n No	
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100
Real-time	RTCCO_0		57	72	92	70
clock	RTCCO_1	Pulse output pin of Real-time clock	37	45	55	33
	RTCCO_2		10	14	19	97
	SUBOUT_0		57	72	92	70
	SUBOUT_1	Sub clock output pin	37	45	55	33
	SUBOUT_2		10	14	19	97
Low- Power	WKUP0	Deep standby mode return signal input pin 0	57	72	92	70
Consumption Mode	WKUP1	Deep standby mode return signal input pin 1	35	43	53	31
	WKUP2	Deep standby mode return signal input pin 2	48	59	73	51
	WKUP3	Deep standby mode return signal input pin 3	60	76	96	74
DAC	DA0	D/A converter ch.0 analog output pin	26	34	44	22
	DA1	D/A converter ch.1 analog output pin	27	35	45	23
HDMI-	CEC0	HDMI-CEC ch.0 pin	25	33	43	21
CEC	CEC1	HDMI-CEC ch.1 pin	60	76	96	74

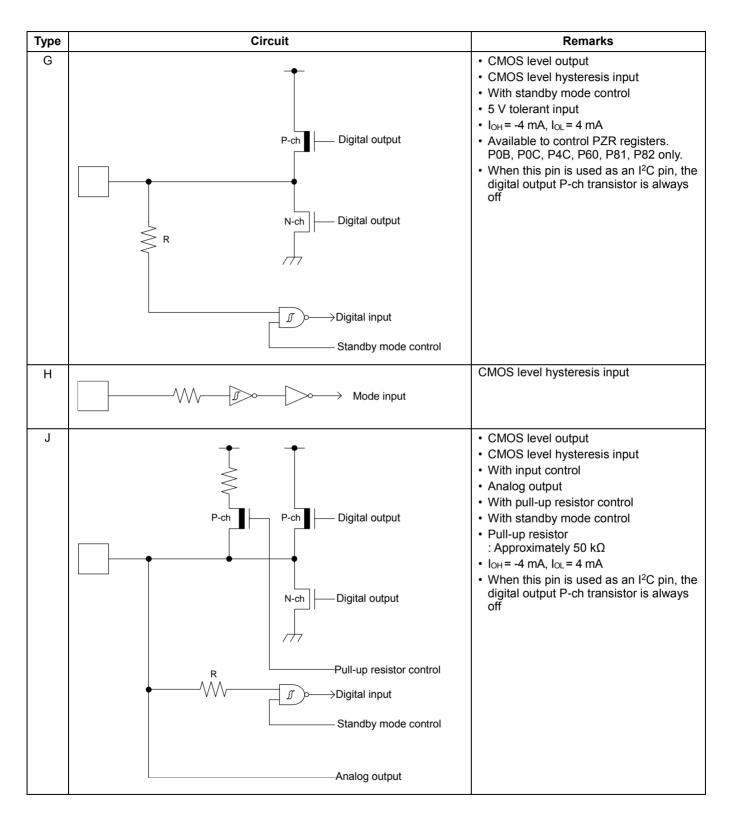
Pin	D:	Eurotion description	Pin No			
function	Pin name	Function description	LQFP-64	LQFP-80	LQFP-100	QFP-100
Reset	INITX	External Reset Input Pin. A reset is valid when INITX = L.	21	28	38	16
Mode	MD0	Mode 0 pin. During normal operation, MD0 = L must be input. During serial programming to Flash memory, MD0 = H must be input.	29	37	47	25
	MD1	Mode 1 pin. During normal operation, input is not needed. During serial programming to Flash memory, MD1 = L must be input.	28	36	46	24
Power			1	1	1	79
			-	-	26	4
	VCC	Power supply pin	18	25	35	13
			33	41	51	29
			-	-	76	54
GND			16	20	25	3
			-	24	34	12
	VSS	GND pin	32	40	50	28
			-	-	75	53
			64	80	100	78
Clock	X0	Main clock (oscillation) input pin	30	38	48	26
	X0A	Sub clock (oscillation) input pin	19	26	36	14
	X1	Main clock (oscillation) I/O pin	31	39	49	27
	X1A	Sub clock (oscillation) I/O pin	20	27	37	15
	CROUT_0	Built-in High-speed CR-osc clock output	-	60	74	52
	CROUT_1	port	57	72	92	70
Analog Power	AVCC	A/D converter and D/A converter analog power supply pin	41	50	60	38
	AVRH	A/D converter analog reference voltage input pin	42	51	61	39
Analog GND	AVSS	A/D converter and D/A converter GND pin	43	52	62	40
C pin	С	Power supply stabilization capacity pin	17	23	33	11


Note:

Document Number: 002-05675 Rev.*D Page 30 of 99


While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller.


5. I/O Circuit Type



6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

- 1. Preventing Over-Voltage and Over-Current Conditions
 - Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
- 2. Protection of Output Pins
 - Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.
- 3. Handling of Unused Input Pins
 - Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Document Number: 002-05675 Rev.*D Page 35 of 99

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress Inc. recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.
 - When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress Inc. packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Document Number: 002-05675 Rev.*D Page 36 of 99

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MO).
 - Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

6.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

- 1. Humidity
 - Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.
- 2. Discharge of Static Electricity
 - When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.
- 3. Corrosive Gases. Dust. or Oil
 - Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
- 4. Radiation, Including Cosmic Radiation
 - Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
- 5. Smoke, Flame
 - CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

Document Number: 002-05675 Rev.*D Page 37 of 99

7. Handling Devices

Power supply pins

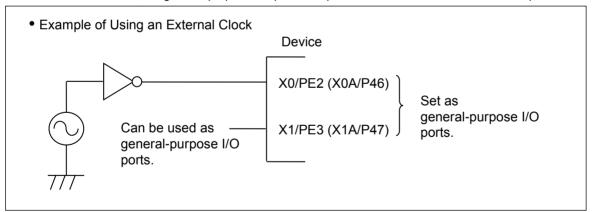
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 μ F be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device.

Stabilizing power supply voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/µs when there is a momentary fluctuation on switching the power supply.

Crystal oscillator circuit


Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.

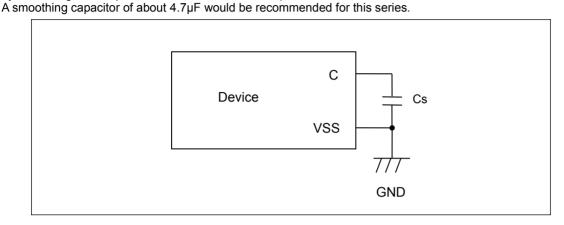
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

Using an external clock

To use the external clock, set general-purpose I/O ports to input the clock to X0/PE2 and X0A/P46 pin.

Handling when using Multi-function serial pin as I²C pin


If it is using the multi-function serial pin as I²C pins, P-ch transistor of digital output is always disabled. However, I²C pins need to keep the electrical characteristic like other pins and not to connect to the external I²C bus system with power OFF.

Document Number: 002-05675 Rev.*D Page 38 of 99

C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.

Mode pins (MD0, MD1)

Connect the MD pin (MD0, MD1) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

Notes on power-on

Turn power on/off in the following order or at the same time.

If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.

Turning on: $VCC \rightarrow AVCC \rightarrow AVRH$ Turning off: $AVRH \rightarrow AVCC \rightarrow VCC$

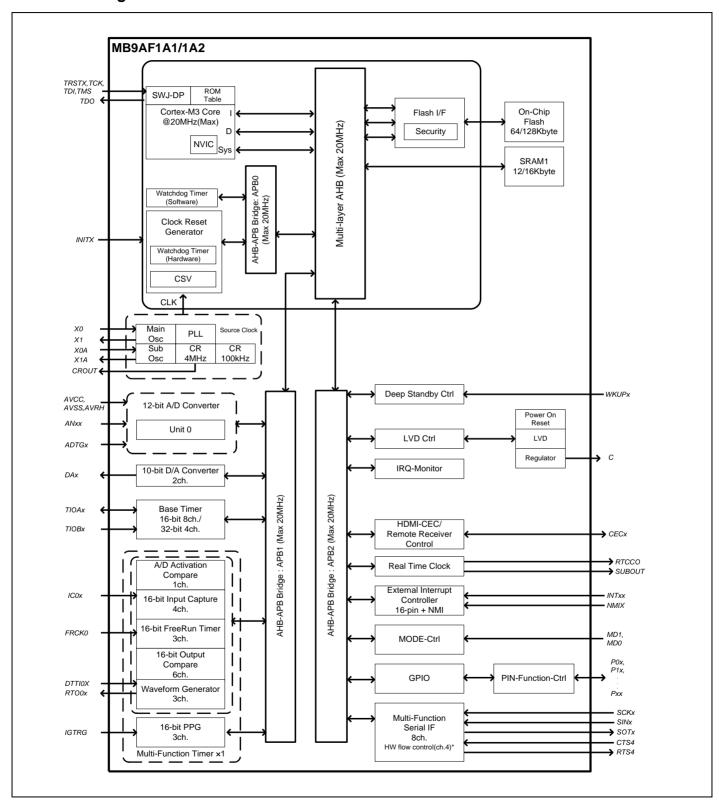
Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

Differences in features among the products with different memory sizes and between Flash memory products and MASK products

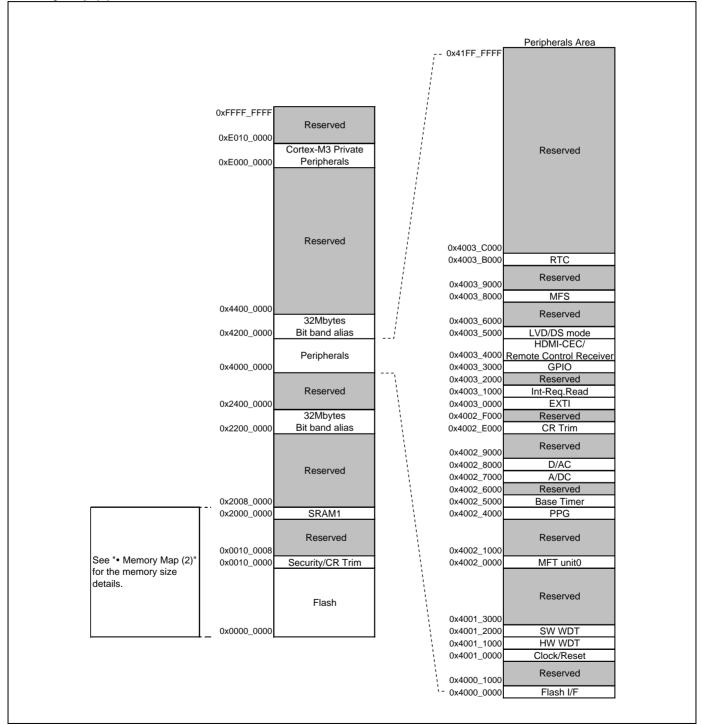

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

Document Number: 002-05675 Rev.*D Page 39 of 99

8. Block Diagram

^{*:} For the MB9AF1A1L and MB9AF1A2L, Multi-function Serial Interface does not support hardware flow control in these products.



9. Memory Size

See Memory size in Product Lineup to confirm the memory size.

10. Memory Map

Memory Map (2)					
	MB9AF1A2L/M/N	-		MB9AF1A1L/M/N	
0x2008_0000			0x2008_0000		
	Reserved			Reserved	
0x2000_4000	CDAMA		0x2000_3000		
0x2000_0000	SRAM1 16 Kbytes		0x2000_0000	SRAM1 12 Kbytes	
0x0010_0008	Reserved		0x0010_0008	Reserved	
0x0010_0004	CR trimming		0x0010_0004	CR trimming	
0x0010_0000			0x0010_0000	Security	
	Reserved			Reserved	
0x0002_0000		Flash			Flash (
	SA3 (64 KB)	Flash 128 Kbytes	0x0001_0000		Flash 64 Kbytes
	SA2 (60 KB)	bytes		SA2 (60 KB)	ytes
0x0000_0000	SA1 (4 KB)	L	0x0000_0000	SA1 (4 KB)	L

^{*:} See MB9AAA0N/1A0N/A30N/130N/130L Series Flash Programming Manual to confirm the detail of Flash memory.

Peripheral Address Map

Start address	End address	Bus	Peripherals
0x4000_0000	0x4000_0FFF	ALID	Flash memory I/F register
0x4000_1000	0x4000_FFFF	AHB	Reserved
0x4001_0000	0x4001_0FFF		Clock/Reset Control
0x4001_1000	0x4001_1FFF		Hardware Watchdog timer
0x4001_2000	0x4001_2FFF	ADDO	Software Watchdog timer
0x4001_3000	0x4001_4FFF	APB0	Reserved
0x4001_5000	0x4001_5FFF		Reserved
0x4001_6000	0x4001_FFFF		Reserved
0x4002_0000	0x4002_0FFF		Multi-function timer unit0
0x4002_1000	0x4002_1FFF		Reserved
0x4002_2000	0x4002_3FFF		Reserved
0x4002_4000	0x4002_4FFF		PPG
0x4002_5000	0x4002_5FFF		Base Timer
0x4002_6000	0x4002_6FFF	APB1	Reserved
0x4002_7000	0x4002_7FFF		A/D Converter
0x4002_8000	0x4002_8FFF		D/A Converter
0x4002_9000	0x4002_DFFF		Reserved
0x4002_E000	0x4002_EFFF		Built-in CR trimming
0x4002_F000	0x4002_FFFF		Reserved
0x4003_0000	0x4003_0FFF		External Interrupt
0x4003_1000	0x4003_1FFF		Interrupt Source Check Register
0x4003_2000	0x4003_2FFF		Reserved
0x4003_3000	0x4003_3FFF		GPIO
0x4003_4000	0x4003_4FFF		HDMI-CEC/ Remote Control Receiver
0x4003_5000	0x4003_50FF		Low-Voltage Detector
0x4003_5100	0x4003_5FFF	APB2	Deep standby mode Controller
0x4003_6000	0x4003_6FFF	APDZ	Reserved
0x4003_7000	0x4003_7FFF		Reserved
0x4003_8000	0x4003_8FFF		Multi-function serial
0x4003_9000	0x4003_9FFF		Reserved
0x4003_A000	0x4003_AFFF		Reserved
0x4003_B000	0x4003_BFFF		Real-time clock
0x4003_C000	0x4003_FFFF		Reserved
0x4004_0000	0x4004_FFFF		Reserved
0x4005_0000	0x4005_FFFF		Reserved
0x4006_0000	0x4006_0FFF		Reserved
0x4006_1000	0x4006_1FFF	AHB	Reserved
0x4006_2000	0x4006_2FFF		Reserved
0x4006_3000	0x4006_3FFF		Reserved
0x4006_4000	0x41FF_FFFF		Reserved

11. Pin Status in Each CPU State

The terms used for pin status have the following meanings.

■INITX = 0

This is the period when the INITX pin is the L level.

■INITX = 1

This is the period when the INITX pin is the H level.

■SPL = 0

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.

■SPL = 1

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.

■Input enabled

Indicates that the input function can be used.

■Internal input fixed at 0

This is the status that the input function cannot be used. Internal input is fixed at L.

■Hi-Z

Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.

■Setting disabled

Indicates that the setting is disabled.

■ Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

■Analog input is enabled

Indicates that the analog input is enabled.

■Trace output

Indicates that the trace function can be used.

■GPIO selected

In Deep Standby mode, pins switch to the general-purpose I/O port.

List of Pin Status

LIS	t of Pin St	atus								
fus fyne	Function	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	or Deep Sta	oy RTC mode andby Stop state	Return from Deep Standby mode state
Pin status	group	Power supply unstable	Power su	pply stable	Power supply stable	Power sup	oply stable	Power sup	oply stable	Power supply stable
Δ	•	-	INITX = 0	INITX = 1	INITX = 1	INITX = 1		INIT	INITX = 1	
		-	-	-	-	SPL = 0	SPL = 0		SPL = 1	-
	Main crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
А	External main clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state / When oscillation stops*1, output maintains previous state / Internal input fixed at 0	Hi-Z / Input enabled / When oscillation stops*1, Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	GPIO selected
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
В	output pin	Hi-Z / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state / When oscillation stops*1, Hi-Z output / Internal input fixed at 0	/ Internal	/ Internal	Maintain previous state / When oscillation stops*1, Hi-Z output / Internal input fixed at 0	Maintain previous state / When oscillation stops*1, Hi-Z output / Internal input fixed at 0	Maintain previous state / When oscillation stops*1, Hi-Z output / Internal input fixed at 0
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
С	INITX input pin	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled

tus type	Function	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	or Deep St	by RTC mode andby Stop state	Return from Deep Standby mode state
Pin status	group	Power supply unstable	Power su	pply stable	Power supply stable	Power sup	oply stable	Power sup	oply stable	Power supply stable
1			INITX = 0	INITX = 1	INITX = 1	INIT	X = 1 SPL = 1	INIT	X = 1 SPL = 1	INITX = 1
D	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
	JTAG selected	Hi-Z	Pull-up / Input enabled	Pull-up / Input enabled	Maintain	Maintain	Maintain previous state	Maintain	Maintain previous state	Maintain
Ε	GPIO selected	Setting disabled	Setting disabled	Setting disabled	previous state	previous state	Hi-Z / Internal input fixed at 0	previous state	Hi-Z / Internal input fixed at 0	previous state
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state	GPIO selected		GPIO selected
F	Resource other than above selected		Hi-Z /	Hi-Z /		state	Hi-Z / Internal input fixed at 0	Internal input fixed at 0	Hi-Z / Internal input fixed at 0	2.72.23.33.34
	GPIO selected	Hi-Z	Input enabled	Input enabled				Output maintains previous state / Internal input fixed at 0		Maintain previous state
	WKUP enabled	Setting disabled	Setting disabled	Setting disabled			Hi-Z / Internal input fixed at 0	WKUP input enabled	Hi-Z / WKUP input enabled	
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain	Maintain	Maintain previous state	GPIO selected		GPIO selected
G	Resource other than above selected		Hi-Z /	Hi-Z /	previous state	previous state	Hi-Z /	Internal input fixed at 0	Hi-Z / Internal input fixed at 0	
	GPIO selected	Hi-Z	Input enabled	Input enabled			Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	incu at 0	Maintain previous state

4 (1)	Function group		INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	or Deep Sta	by RTC mode andby Stop state	Return from Deep Standby mode state
in oto	group	Power supply unstable	Power supply stable		Power supply stable	-	oply stable	Power supply stable		Power supply stable
ľ	-	-	INITX = 0	INITX = 1	INITX = 1	SPL = 0	X = 1 SPL = 1	SPL = 0	X = 1 SPL = 1	INITX = 1
	Resource selected	-	-	11: 7 /	- Maintain	Maintain	Hi-Z /	GPIO selected Internal input fixed at 0		GPIO selected
F	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	previous	previous state	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
	NMIX selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state		Hi-Z / WKUP input enabled	
I	Resource other than above selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed	WKUP input enabled		GPIO selected
	GPIO selected		enabled	enabled		at 0				Maintain previous state
	Analog input selected	Hi-Z	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled
J	Resource other than above selected			Maintain	Maintain	Hi-Z /	GPIO selected Internal input fixed at 0		GPIO selected	
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	previous state	previous state	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state

status type	Function group	Power-on reset or low-voltage detection state Power	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	or Deep Sta	by RTC mode andby Stop state	Return from Deep Standby mode state
Pin sta	group	supply unstable	Power su	oply stable	supply stable	Power sup	Power supply stable		oply stable	Power supply stable
٩		-	INITX = 0	INITX = 1	INITX = 1	INIT		INIT		INITX = 1
	Analog input selected	- Hi-Z	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	SPL = 1 Hi-Z / Internal input fixed at 0 / Analog input enabled	SPL = 0 Hi-Z / Internal input fixed at 0 / Analog input enabled	SPL = 1 Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled
К	External interrupt enabled selected Resource other than above selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	GPIO selected Internal input fixed at 0	Hi-Z / Internal input fixed at 0	GPIO selected
	GPIO selected					State	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	tixed at U	Maintain previous state
	Analog input selected	Hi-Z	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled
	WKUP enabled						Hi-Z / Internal input fixed at 0	WKUP input enabled	Hi-Z / WKUP input enabled	
L	External interrupt enabled selected				Maintain	Maintain	Maintain previous state	GPIO selected		GPIO selected
	Resource other than above selected	Setting disabled	Setting disabled	Setting disabled	previous state	previous state	Hi-Z /	Internal input fixed at 0	Hi-Z / Internal input fixed at 0	
	GPIO selected						Internal input fixed at 0	Output maintains previous state / Internal input fixed at "0"	iikeu al U	Maintain previous state

status type	Function group	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state Power	RTC m	mode, ode, or ode state	or Deep Sta	by RTC mode andby Stop state	Return from Deep Standby mode state
Pin st	group	supply unstable	Power sup	pply stable	supply stable	Power sup	pply stable	Power supply stable		Power supply stable
٩		-	INITX = 0	INITX = 1	INITX = 1	INIT	X = 1 SPL = 1	INIT	X = 1 SPL = 1	INITX = 1
	Sub crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
M	External sub clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state / When oscillation stops*2, output maintains previous state / Internal input fixed at 0	Hi-Z / Input enabled / When oscillation stops* ² , Hi-Z / Internal input fixed at 0	Maintain previous state / When oscillation stops*2, output maintains previous state / Internal input fixed at 0	Hi-Z / Input enabled / When oscillation stops*2, Hi-Z / Internal input fixed at 0	Maintain previous state / When Return from Deep Standby STOP mode, GPIO is selected
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
Z	Sub crystal oscillator output pin	Hi-Z / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state	Maintain previous state / When oscillation stops*2, Hi-Z / Internal input fixed at 0	Maintain previous state / When oscillation stops* ² , Hi-Z / Internal input fixed at 0	Maintain previous state / When oscillation stops*2, Hi-Z / Internal input fixed at 0	Maintain previous state / When oscillation stops*2, Hi-Z / Internal input fixed at 0	Maintain previous state / When oscillation stops* ² , Hi-Z / Internal input fixed at 0
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain	Maintain	Maintain previous state	GPIO selected / Internal input fixed at 0	·Hi-Z /	GPIO selected
0	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	previous state	previous state	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Internal input fixed at 0	Maintain previous state

status type	Function	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	or Deep Sta	by RTC mode andby Stop state	Return from Deep Standby mode state
Pin ctat	group	Power supply unstable		pply stable	Power supply stable	-	oply stable	-	oply stable	Power supply stable
"		-	INITX = 0	INITX = 1	INITX = 1		X = 1	INIT		INITX = 1
-	NA . I .	-	-	-	-	SPL = 0	SPL = 1	SPL = 0	SPL = 1	-
	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
Р	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / input enabled	Maintain previous state	Hi-Z / input enabled	Maintain previous state
	CEC enabled	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state
C	Resource other than above selected	U: 7 /					Hi-Z /	GPIO selected Internal input fixed at 0	,	GPIO selected
	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	Maintain previous state	Maintain previous state	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
	CEC enabled	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state
	WKUP enabled	Setting	Setting	Setting			Hi-Z / Internal input fixed at 0	WKUP input enabled	Hi-Z / WKUP input enabled	
R	External interrupt enabled selected	disabled	disabled	disabled	Maintain	Maintain	Maintain previous state	GPIO selected		GPIO selected
	Resource other than above selected		Li: 7 /	Hi-Z /	previous state	previous state	Hi-Z /	Internal input fixed at 0	Hi-Z / Internal input fixed at 0	
	GPIO selected	Hi-Z	Hi-Z / Input enabled	Input enabled			Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	incu at u	Maintain previous state

file type	Function	Power-on reset or low-voltage detection state	INITX input state	Device internal reset state	state		RTC mode, or or De		Standby RTC mode Deep Standby Stop mode state Return Deep S mode		INITX input state			
Din etatue	group	Power supply unstable	Power supply stable		Power supply stable	supply Power supply stable		Power supply stable		Power supply stable				
	•	-	INITX = 0	INITX = 1	INITX = 1	SPL = 0	X = 1 SPL = 1	SPL = 0	X = 1 SPL = 1	INITX = 1				
	Analog output selected	Setting disabled	Setting disabled	Setting disabled	-	*3	*4	SPL - U	SFL - I	-				
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	state	Maintain previous state	Maintain previous state	GPIO selected Internal input fixed at 0		GPIO selected				
S	Resource other than above selected	other than above	Hi-Z /	-Z / Hi-Z /			Hi-Z / Internal input fixed at 0	inxed at 0	Hi-Z / Internal input fixed at 0					
	GPIO selected	Hi-Z	Input enabled	Input enabled				Output maintains previous state / Internal input fixed at 0		Maintain previous state				
	Analog output selected	Setting disabled	Setting disabled	Setting disabled		*3	*4	GPIO selected						
Т	Resource other than above selected		Li: 7 /	ш; 7 /	Maintain previous	Maintain	Hi-Z /	Internal input fixed at 0	Hi-Z / Internal input	GPIO selected				
	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	state	Maintain previous state	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	fixed at 0	Maintain previous state				

^{*1:} Oscillation is stopped at Sub run mode, Low-speed CR Run mode, Sub Sleep mode, Low-speed CR Sleep mode, Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode.

^{*2:} Oscillation is stopped at Stop mode and Deep Standby Stop mode.

^{*3:} Maintain previous state at Timer mode. GPIO selected Internal input fixed at 0 at RTC mode, Stop mode.

^{*4:} Maintain previous state at Timer mode. Hi-Z/Internal input fixed at 0 at RTC mode, Stop mode.

12. Electrical Characteristics

12.1 Absolute Maximum Ratings

		Ra	ting		
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1,*2	Vcc	Vss - 0.5	V _{SS} + 6.5	V	
Analog power supply voltage*1,*3	AVcc	Vss - 0.5	V _{SS} + 6.5	V	
Analog reference voltage*1,*3	AVRH	Vss - 0.5	V _{SS} + 6.5	V	
Input voltage*1	Vı	Vss - 0.5	V _{CC} + 0.5 (≤ 6.5 V)	V	
		V _{SS} - 0.5	V _{SS} + 6.5	V	5V tolerant
Analog pin input voltage*1	VIA	Vss - 0.5	AV _{CC} + 0.5 (≤ 6.5 V)	V	
Output voltage*1	Vo	V _{SS} - 0.5	V _{CC} + 0.5 (≤ 6.5 V)	V	
L level maximum output current*4	loL	-	10	mA	
L level average output current*5	lolav	-	4	mA	
L level total maximum output current	∑lo∟	-	100	mA	
L level total average output current*6	∑lolav	-	50	mA	
H level maximum output current*4	Іон	-	- 10	mA	
H level average output current*5	Іонаv	-	- 4	mA	
H level total maximum output current	Σl _{OH}	-	- 100	mA	
H level total average output current*6	∑lohav	-	- 50	mA	
Power consumption	P _D	-	400	mW	
Storage temperature	T _{STG}	- 55	+ 150	°C	

^{*1:} These parameters are based on the condition that $V_{SS} = AV_{SS} = 0 \text{ V}$.

WARNING:

 Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings.
 Do not exceed any of these ratings.

Document Number: 002-05675 Rev.*D Page 52 of 99

^{*2:} V_{CC} must not drop below V_{SS} - 0.5 V.

^{*3:} Be careful not to exceed V_{CC} + 0.5 V, for example, when the power is turned on.

^{*4:} The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.

^{*5:} The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period.

^{*6:} The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms.

12.2 Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0.0V)$

_		Symbol		Va	lue	I	
Par	Parameter		Conditions	Min	Max	Unit	Remarks
Power supply	voltage	Vcc	-	1.8	5.5	V	
Analog power	supply voltage	AV cc	-	1.8	5.5	V	AV _{CC} = V _{CC}
Analog referen	ann voltage	AVRH		2.7	۸۱/	V	AV _{CC} ≥ 2.7 V
Analog referer	ice voltage	AVKIT	-	AVcc	AVcc	\ \	AV _{CC} < 2.7 V
Smoothing cap	pacitor	Cs	-	1	10	μF	For built-in Regulator *
LQD064, LQG064, Operating LQH080, Temperature LQJ080, LQI100, PQH100		TA	-	- 40	+ 85	°C	

^{*:} See C Pin in Handling Devices for the smoothing capacitor.

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All
of the device's electrical characteristics are warranted when the device is operated under these conditions.
 Any use of semiconductor devices will be under their recommended operating condition.

Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

Document Number: 002-05675 Rev.*D Page 53 of 99

12.3 DC Characteristics

12.3.1 Current Rating

 $(V_{CC} = AV_{CC} = 1.8 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin		Conditions	Va	lue	Unit	Remarks	
Parameter	Syllibol	name		Conditions	Typ*3	Max*4	Ullit	Remarks	
			PLL Run mode	CPU: 20 MHz, Peripheral: 20 MHz, Flash memory 0 Wait, FRWTR.RWT = 00, FSYNDN.SD = 000	19	24	mA	*1, *5	
		VCC		CPU: 20 MHz, Peripheral: clock stopped, NOP operation	9.5	12.5	mA	*1, *5	
	Icc		High-spee d CR Run mode	CPU/Peripheral: 4 MHz*2 Flash memory 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000	4.5	5	mA	*1	
			Sub Run mode	CPU/Peripheral: 32 kHz, Flash memory 0 Wait, FRWTR.RWT = 00, FSYNDN.SD = 000	0.25	0.55	mA	*1, *6	
Power supply current			Low-speed CR Run mode	CPU/Peripheral: 100 kHz, Flash memory 0 Wait, FRWTR.RWT = 00, FSYNDN.SD = 000	0.3	0.95	mA	*1	
			PLL Sleep mode	Peripheral: 20 MHz	8	10.5	mA	*1, *5	
	Iccs		High-spee d CR Sleep mode	Peripheral: 4 MHz*2	2	2.5	mA	*1	
			Sub Sleep mode	Peripheral: 32 kHz	0.2	0.45	mA	*1, *6	
			Low-speed CR Sleep mode	Peripheral: 100 kHz	0.25	0.65	mA	*1	

^{*1:} When all ports are fixed.

^{*2:} When setting it to 4 MHz by trimming.

^{*3:} T_A=+25°C, V_{CC}=3.3 V

^{*4:} T_A =+85°C, V_{CC} =5.5 V

^{*5:} When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)

^{*6:} When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)

Downston	Current ed	Pin		Canditions	Val	lue	I I mit	Damarka
Parameter	Symbol	name		Conditions	Typ*2	Max*3	Unit	Remarks
	Ісет		Main	T _A = + 25°C, When LVD is off	0.9	3.3	mA	*1, *4
			Timer mode	T _A = + 85°C, When LVD is off	1.5	3.5	mA	*1, *4
			Sub	T _A = + 25°C, When LVD is off	7.5	60	μA	*1, *5
			Timer mode	T _A = + 85°C, When LVD is off	16	150	μA	*1, *5
		RTC mode	T _A = + 25°C, When LVD is off	1.5	6.5	μA	*1, *5	
Power	ICCR	V00	Ter o mode	T _A = + 85°C, When LVD is off	6	79	μA	*1, *5
supply current	laa	VCC	Stop mode	T _A = + 25°C, When LVD is off	0.6	5	μA	*1
	Іссн		Stop mode	T _A = + 85°C, When LVD is off	4.2	77	μA	*1
	loopp		Deep Standby	T _A = + 25°C, When LVD is off	1.3	4.5	μA	*1, *5
	Iccrd		RTC mode	T _A = + 85°C, When LVD is off	3	22	μA	*1, *5
	looup		Deep	T _A = + 25°C, When LVD is off	0.4	3	μA	*1
	Іссно		Standby Stop mode	T _A = + 85°C, When LVD is off	1.4	20	μA	*1

^{*1:} When all ports are fixed.

^{*2:} V_{CC}=3.3 V

^{*3:} V_{CC}=5.5 V

^{*4:} When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)

^{*5:} When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)

Low Voltage Detection Current

(V_{CC} = AV_{CC} = 1.8 V to 5.5 V, V_{SS} = AV_{SS} = 0 V, T_A = -40°C to +85°C)

Doromotor	Cymphol	Pin	Conditions	Va	lue	Unit	Remarks
Parameter	Symbol	name Conditions		Typ*	Max	Offic	Remarks
Low-voltage			For occurrence of reset or for occurrence of interrupt in normal mode operation	10	20	μA	When not detected
detection circuit (LVD) power supply current	ICCLVD	vcc	For occurrence of reset and for occurrence of interrupt in normal mode operation	14	30	μA	When not detected
			For occurrence of interrupt in low-power mode operation	0.3	2	μA	When not detected

^{*:} When $V_{CC} = 3.3 \text{ V}$

Flash Memory Current

 $(V_{CC}$ = 1.8 V to 5.5 V, V_{SS} = 0 V, T_A = -40°C to +85°C)

Devementer	Comple	Pin Conditions Value		alue	11:4	Remarks		
Parameter	Symbol	name	Conditions	Тур	Max	Unit	Remarks	
Flash memory write/erase current	Iccflash	VCC	At Write/Erase	10.8	11.9	mA		

A/D Converter Current

 $(V_{CC} = AV_{CC} = 1.8 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V}, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$

Parameter	Cymphol	Pin	Conditions	V	alue	Unit	Remarks	
Parameter	Symbol	name	Conditions	Тур	Max	Onic	Remarks	
Power supply current	Iccad	AVCC	At 1unit operation	1.4	2.5	mA		
Carrent			At stop	0.1	0.35	μΑ		
Reference power supply current	Iccavrh	AVRH	At 1unit operation AVRH=5.5 V	0.5	1.5	mA		
			At stop	0.1	0.3	μA		

D/A Converter Current

(V_{CC} = AV_{CC} = 1.8 V to 5.5 V, V_{SS} = AV_{SS} = 0 V, T_A = -40°C to +85°C)

D	Ols al	Pin name	0	Va	lue	l lmi4	Remarks
Parameter	Symbol		Conditions	Тур	Max	Unit	Remarks
_	lan.		At D/A 1ch. operation AVcc=3.3 V	314	440	μА	*1, *2
Power supply current	IDDA	AVCC	At D/A 1ch. operation AVcc=5.0 V	476	670	μА	*1, *2
	I _{DSA}		At D/A stop	-	1.0	μA	*1

^{*1:} No-load

Document Number: 002-05675 Rev.*D Page 56 of 99

^{*2:} Generates the max current by the CODE about 0x200

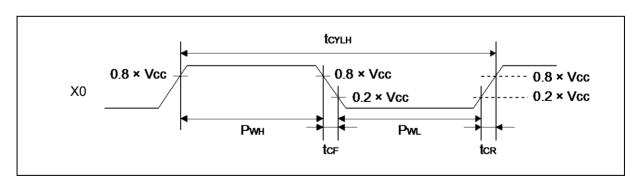
Page 57 of 99

12.3.2 Pin Characteristics

 $(V_{CC} = AV_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Danie in a tau	0	Dia	0		Value		1114	Damanda
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
H level input		MD0, MD1, PE0, PE2, PE3, P46, P47, P3A, P3B, P3C, P3D, P3E, P3F, INITX	-	Vcc × 0.8	-	Vcc + 0.3	V	
voltage (hysteresis input)	V _{IHS}	P0A, P0B, P0C, P4C, P60, P80, P81, P82	-	Vcc × 0.7	-	Vss + 5.5	V	5V tolerant
		CMOS hysteresis input pins other than the above	-	Vcc × 0.7	-	Vcc + 0.3	V	
L level input voltage (hysteresis	V _{ILS}	MD0, MD1, PE0, PE2, PE3, P46, P47, INITX	-	Vss - 0.3	-	Vcc × 0.2	V	
input)		CMOS hysteresis input pins other than the above	-	Vss - 0.3	-	Vcc × 0.3	V	
H level output voltage	V _{ОН}	Pxx	$V_{CC} \ge 4.5 \text{ V},$ $I_{OH} = -4 \text{ mA}$ $V_{CC} < 4.5 \text{ V},$ $I_{OH} = -1 \text{ mA}$	Vcc - 0.5	-	Vcc	V	
L level output voltage	VoL	Pxx	$V_{CC} \ge 4.5 \text{ V},$ $I_{OL} = 4 \text{ mA}$ $V_{CC} < 4.5 \text{ V},$ $I_{OL} = 2 \text{ mA}$	Vss	-	0.4	V	
		-	-	- 5	-	+ 5		
Input leak current	I _{IL}	CEC0, CEC1	V _{CC} = AV _{CC} = AVRH = V _{SS} = AV _{SS} = 0.0 V	-	-	+ 1.8	μА	
Pull-up resistor	R _{PU}	Pull-up pin	V _{CC} ≥ 4.5 V	25	50	100	kΩ	
value	INPU	ruii-up piii	V _{CC} < 4.5 V	40	100	400	K77	
Input capacitance	Cin	Other than VCC, VSS, AVCC, AVSS, AVRH	-	-	5	15	pF	

12.4 AC Characteristics

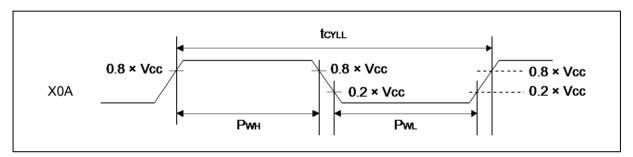

12.4.1 Main Clock Input Characteristics

 $(V_{CC}$ = 1.8V to 5.5V, V_{SS} = 0V, T_A = -40°C to +85°C)

Parameter	Cymhol	Pin	Conditions	Val	lue	Unit	Remarks
Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks
			V _{CC} ≥ 2.0 V	4	20	MHz	When crystal oscillator is
Input frequency	fсн		V _{CC} < 2.0 V	4	4	MHz	connected
input irequency	ICH		V _{CC} ≥ 4.5 V	4	20	MHz	When using external
			$V_{\text{CC}} < 4.5 \text{ V}$	4	16	MHz	clock
Innut algal, avala	tova	X0,	V _{CC} ≥ 4.5 V	50	250	ns	When using external
Input clock cycle	tcylh	X1	$V_{\text{CC}} < 4.5 \text{ V}$	62.5	250	ns	clock
Input clock pulse	_		Pwh/tcylh,	45	55	%	When using external
width	_		Pwt/tcyth	40	55	70	clock
Input clock rising	tcF,		_	_	5	ns	When using external
time and falling time	t _{CR}				Ů	1.0	clock
	f _{CM}	-	-	-	20	MHz	Master clock
Internal operating	fcc	-	-	-	20	MHz	Base clock (HCLK/FCLK)
clock*1	f _{CP0}	-	-	-	20	MHz	APB0 bus clock*2
frequency	f _{CP1}	-	-	-	20	MHz	APB1 bus clock*2
	f _{CP2}	-	-	-	20	MHz	APB2 bus clock*2
	tcycc	-	-	50	-	ns	Base clock (HCLK/FCLK)
Internal operating	t _{CYCP0}	-	-	50	-	ns	APB0 bus clock*2
clock*1 cycle time	t _{CYCP1}	-	-	50	-	ns	APB1 bus clock*2
	t _{CYCP2}	-	-	50	-	ns	APB2 bus clock*2

^{*1:} For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual.

^{*2:} For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.



12.4.2 Sub Clock Input Characteristics

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks
Parameter	Symbol	name	Conditions	Min	Тур	Max	Ollit	Kelliaiks
Input frequency	fcL		-	-	32.768	-	kHz	When crystal oscillator is connected
,		X0A,	-	32	ı	100	kHz	When using external clock
Input clock cycle	tcyll	X1A	-	10	-	31.25	μs	When using external clock
Input clock pulse width	-		Pwh/tcyll, Pwl/tcyll	45	-	55	%	When using external clock

12.4.3 Built-in CR Oscillation Characteristics

Built-in High-speed CR

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Cumbal		Conditions		Value		Unit	Remarks
Parameter	Symbol		Conditions	Min	Тур	Max	Unit	Remarks
			T _A = + 25°C	3.92	4	4.08		When trimming*1
		V _{CC} ≥	$T_A = -40^{\circ}C \text{ to } + 85^{\circ}C$	3.8	4	4.2	MHz	when unnining
Clask framework	fcкн	2.2 V	T _A = - 40°C to + 85°C	2.3	-	7.03	141112	When not trimming
Clock frequency			T _A = + 25°C	3.4	4	4.6		Mhon trimming*1
		V _{CC} <	T _A = - 40°C to + 85°C	3.16	4	4.84	MHz	When trimming*1
	2.2 \		T _A = - 40°C to + 85°C	2.3	-	7.03	141112	When not trimming
Frequency stabilization time	tcrwT	-	-		-	10	μs	*2

^{*1:} In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.

Document Number: 002-05675 Rev.*D Page 59 of 99

^{*2:} This is the time to stabilize the frequency of High-speed CR clock after setting trimming value. This period is able to use High-speed CR clock as source clock.

Built-in Low-speed CR

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks
Parameter	Symbol	Conditions	Min	Тур	Max	Oilit	Remarks
Clock frequency	f _{CRL}	-	50	100	150	kHz	

12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL)

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$

Parameter	Symbol	Value			Unit	Remarks
Faiametei	Symbol	Min	Тур	Max	Oilit	Remarks
PLL oscillation stabilization wait time*1 (LOCK UP time)	tLOCK	200	-	-	μs	
PLL input clock frequency	f _{PLLI}	4	-	20	MHz	
PLL multiplication rate	-	1	1	5	multiplier	
PLL macro oscillation clock frequency	f _{PLLO}	10	-	20	MHz	
Main PLL clock frequency*2	fclkpll	-	-	20	MHz	

^{*1:} Time from when the PLL starts operating until the oscillation stabilizes.

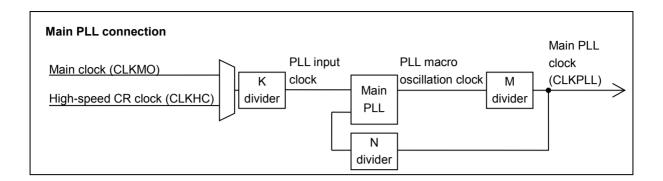
12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock of the Main PLL)

$$(V_{CC} = 2.2V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$$

Parameter	Symbol	Value			Unit	Remarks
Faranietei	Syllibol	Min	Тур	Max	Oille	Kemarks
PLL oscillation stabilization wait time*1 (LOCK UP time)	tLOCK	200	-	-	μs	
PLL input clock frequency	f _{PLLI}	3.8	4	4.2	MHz	
PLL multiplication rate	-	3	-	4	multiplier	
PLL macro oscillation clock frequency	f _{PLLO}	11.4	-	16.8	MHz	
Main PLL clock frequency*2	fclkpll	-	-	16.8	MHz	

^{*1:} Time from when the PLL starts operating until the oscillation stabilizes.

Note:


Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the frequency has been trimmed.
 When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the master clock from exceeding the maximum frequency.

Document Number: 002-05675 Rev.*D Page 60 of 99

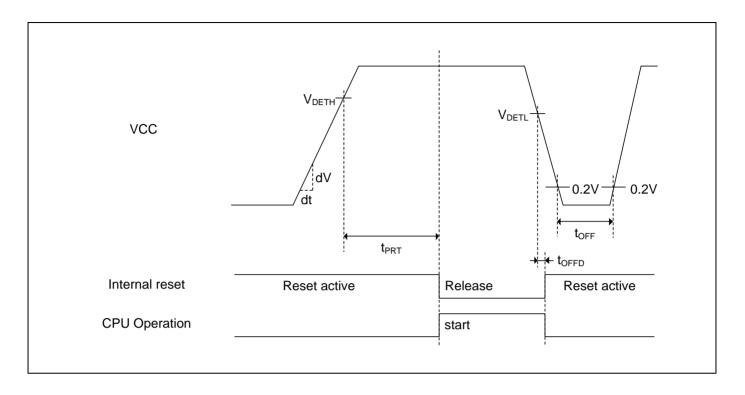
^{*2:} For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.

^{*2:} For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.

12.4.6 Reset Input Characteristics

$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$$

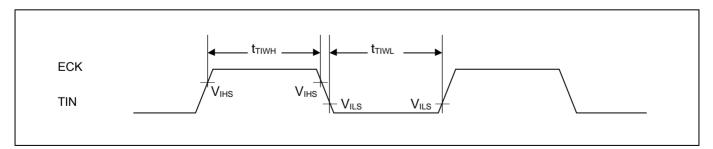
Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks
raiametei Symbol		name		Min	Max	0	Kemarks
				500	-	ns	
Reset input time	t _{INITX}	INITX	-	1.5	-	ms	When RTC mode or Stop mode
	ļ		ı	1.5	-	ms	When Deep Standby mode


12.4.7 Power-on Reset Timing

$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$$

Parameter	Symbol	Pin name		Value		Unit	Remarks
Parameter	Symbol		Min	Тур	Max	Ullit	Remarks
Power supply rising time	dV/dt		0.1	-	-	V/ms	
Power supply shut down time	toff		1	-	-	ms	
Reset release voltage	V _{DETH}		1.44	1.60	1.76	V	When voltage rises
Reset detection voltage	VDETL	VCC	1.39	1.55	1.71	V	When voltage drops
Time until releasing Power-on reset	t _{PRT}		0.46	-	11.4	ms	dV/dt ≥ 0.1mV/μs
Reset detection delay time	toffd		-	-	0.4	ms	dV/dt ≥ -0.04mV/μs

Document Number: 002-05675 Rev.*D Page 61 of 99

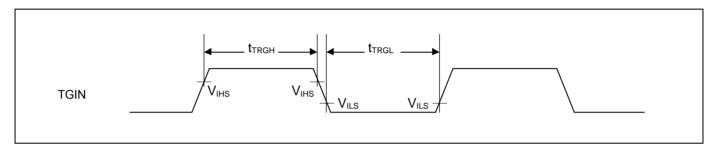


12.4.8 Base Timer Input Timing

Timer input timing

$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$$

Parameter	Symbol	Pin name	Conditions	Val	ue	Unit	Remarks
Farameter	- Cymbon	Tim name	Conditions	Min	Max	Oiiit	Remarks
Input pulse width	t _{тіwн} , t _{тіwL}	TIOAn/TIOBn (when using as ECK, TIN)	-	2t _{CYCP}	-	ns	



Trigger input timing

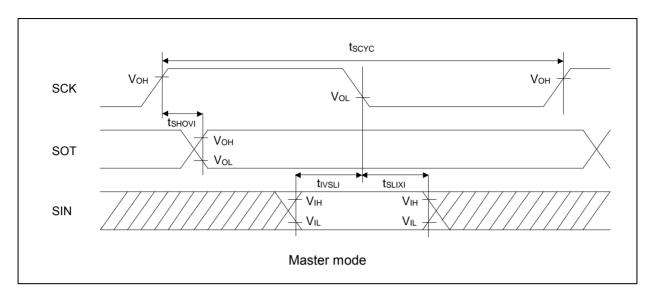
$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$$

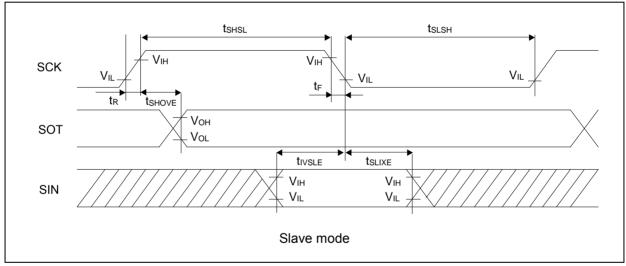
Parameter	Symbol	Pin name	Conditions	Val	ue	Unit	Remarks
Parameter	Gyillooi	i iii iiaiiie	Conditions	Min	Max	Oilit	Remarks
Input pulse width	t _{TRGH} , t _{TRGL}	TIOAn/TIOBn (when using as TGIN)	-	2tcycp	-	ns	

Note:

t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet.

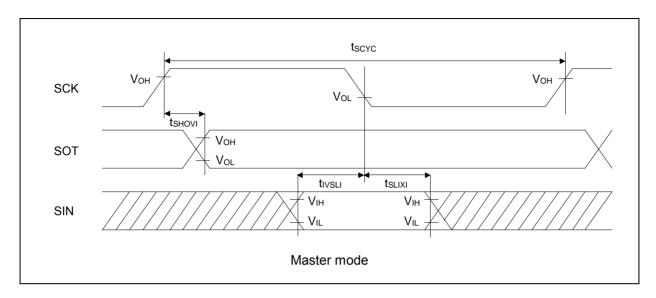
12.4.9 CSIO/UART Timing

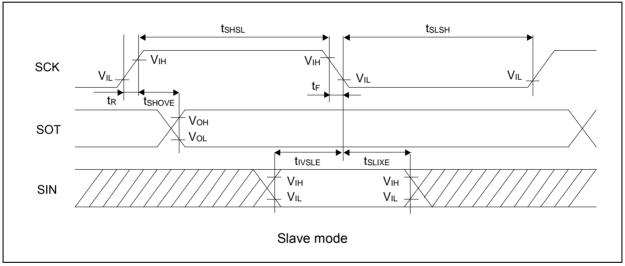

CSIO (SPI = 0, SCINV = 0)


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin	Conditions	Vcc < 2	.7 V	2.7 V V _{CC} < 4.		Vcc ≥ 4	.5 V	Unit
	,	name		Min	Max	Min	Max	Min	Max	
Baud rate	-	-	-	-	5	-	5	-	5	Mbps
Serial clock cycle time	tscyc	SCKx		4tcycp	-	4tcycp	-	4tcycp	-	ns
$\begin{array}{c} SCK \downarrow \to SOT \\ delay \ time \end{array}$	tslovi	SCKx, SOTx]	-40	+40	-30	+30	-20	+20	ns
$SIN \rightarrow SCK \uparrow$ setup time	tıvsнı	SCKx, SINx	Master mode	75	-	50	-	30	-	ns
$\begin{array}{c} SCK \uparrow \to SIN \\ hold time \end{array}$	tshixi	SCKx, SINx		0	-	0	-	0	-	ns
Serial clock L pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock H pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	1	t _{CYCP} + 10	1	ns
$\begin{array}{c} SCK \downarrow \to SOT \\ delay \ time \end{array}$	tslove	SCKx, SOTx		-	75		50		30	ns
SIN \rightarrow SCK \uparrow setup time	tivshe	SCKx, SINx	Slave mode	10	-	10	-	10	-	ns
$\begin{array}{c} SCK \uparrow \to SIN \\ hold time \end{array}$	tshixe	SCKx, SINx		20	-	20	-	20	-	ns
SCK falling time	t _F	SCKx		-	5	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	-	5	ns

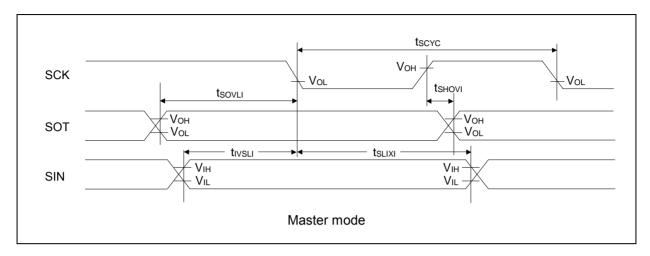
- The above characteristics apply to clock synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 \text{ pF}$.

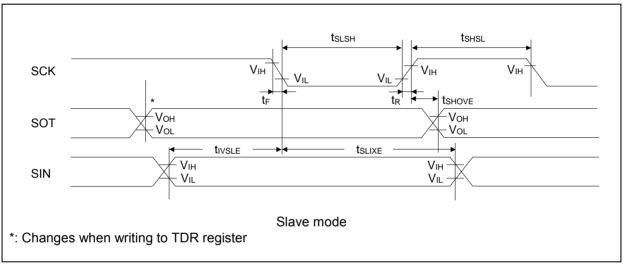

CSIO (SPI = 0, SCINV = 1)


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Pin	Conditions	Vcc < 2.7	7 V	2.7 V V _{CC} < 4.	<u>≤</u> 5 V	Vcc ≥ 4.	.5 V	Unit
		name		Min	Max	Min	Max	Min	Max	
Baud rate	-	-	-	-	5	-	5	-	5	Mbps
Serial clock cycle time	tscyc	SCKx		4tcycp	-	4tcycp	-	4tcycp	-	ns
SCK ↑ → SOT delay time	tshovi	SCKx, SOTx	Monton mondo	-40	+40	-30	+30	-20	+20	ns
$\begin{array}{c} SIN \to SCK \downarrow \\ setup\ time \end{array}$	tıvslı	SCKx, SINx	Master mode	75	-	50	-	30	-	ns
$\begin{array}{c} SCK \downarrow \to SIN \\ hold\ time \end{array}$	t _{SLIXI}	SCKx, SINx		0	-	0	-	0	-	ns
Serial clock L pulse width	t slsh	SCKx		2tcycp - 10	-	2tcycp - 10	1	2tcycp - 10	-	ns
Serial clock H pulse width	tshsl	SCKx		tcycp + 10	-	tcycp + 10	1	tcycp + 10	-	ns
$\begin{array}{c} SCK \uparrow \to SOT \\ delay \ time \end{array}$	tshove	SCKx, SOTx		-	75	-	50	-	30	ns
$\begin{array}{c} SIN \to SCK \downarrow \\ setup\ time \end{array}$	t _{IVSLE}	SCKx, SINx	Slave mode	10	-	10	-	10	-	ns
$\begin{array}{c} SCK \downarrow \to SIN \\ hold\ time \end{array}$	tslixe	SCKx, SINx		20	-	20	-	20	-	ns
SCK falling time	t _F	SCKx		-	5	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	-	5	ns

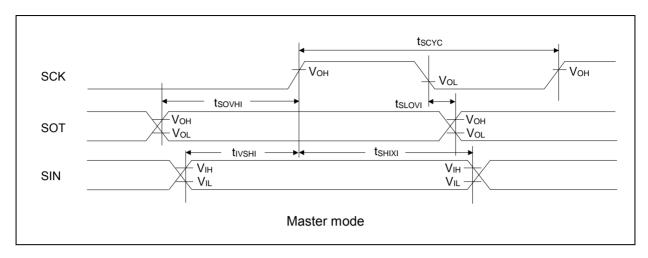
- The above characteristics apply to clock synchronous mode.
- tcycp indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 \text{ pF}$.

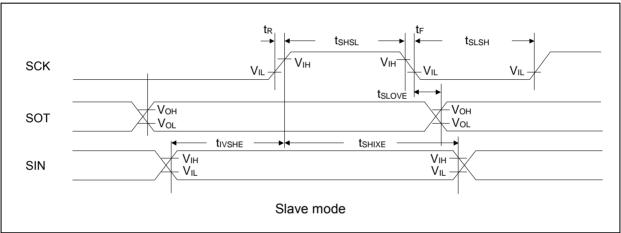

CSIO (SPI = 1, SCINV = 0)


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Pin	Conditions	Vcc < 2	.7 V	2.7 V : V _{CC} < 4.		Vcc ≥ 4.	5 V	Unit
		name		Min	Max	Min	Max	Min	Max	
Baud rate	-	-	-	-	5	-	5	-	5	Mbps
Serial clock cycle time	tscyc	SCKx		4tcycp	ı	4tcycp	ı	4tcycp	ı	ns
SCK ↑ → SOT delay time	t shovi	SCKx, SOTx		-40	+40	-30	+30	-20	+20	ns
$SIN \rightarrow SCK \downarrow$ setup time	tıvslı	SCKx, SINx	Master mode	75	-	50	-	30	-	ns
$\begin{array}{c} SCK \downarrow \to SIN \\ hold\ time \end{array}$	t _{SLIXI}	SCKx, SINx		0	-	0	-	0	-	ns
$\begin{array}{c} SOT \to SCK \downarrow \\ delay\ time \end{array}$	tsovLi	SCKx, SOTx		2tcYCP - 30	-	2tcycp - 30	-	2tcYCP - 30	-	ns
Serial clock L pulse width	t slsh	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock H pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	ı	t _{CYCP} + 10	ı	ns
SCK ↑ → SOT delay time	t _{SHOVE}	SCKx, SOTx		-	75	-	50	-	30	ns
$\begin{array}{c} SIN \to SCK \downarrow \\ setup\ time \end{array}$	tivsle	SCKx, SINx	Slave mode	10	-	10	-	10	-	ns
$\begin{array}{c} SCK \downarrow \to SIN \\ hold\ time \end{array}$	t _{SLIXE}	SCKx, SINx		20	-	20	-	20	-	ns
SCK falling time	t _F	SCKx		-	5	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	-	5	ns

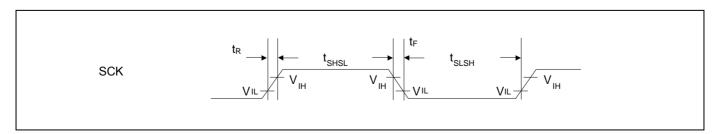
- The above characteristics apply to clock synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 \text{ pF}$.


CSIO (SPI = 1, SCINV = 1)


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Pin	Conditions	Vcc < 2	.7 V	2.7 V : V _{CC} < 4.		V _{cc} ≥ 4.	.5 V	Unit
		name		Min	Max	Min	Max	Min	Max	
Baud rate	-	-	-	-	5	-	5	-	5	Mbps
Serial clock cycle time	tscyc	SCKx		4tcycp	-	4tcycp	-	4tcycp	-	ns
SCK ↓ → SOT delay time	tsLovi	SCKx, SOTx		-40	+40	-30	+30	-20	+20	ns
SIN → SCK ↑ setup time	tıvsнı	SCKx, SINx	Master mode	75	-	50	-	30	-	ns
$\begin{array}{c} SCK \uparrow \to SIN \\ hold\ time \end{array}$	tshixi	SCKx, SINx		0	-	0	-	0	-	ns
SOT → SCK ↑ delay time	tsovні	SCKx, SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	ns
Serial clock L pulse width	t slsh	SCKx		2tcycp - 10	-	2tcycp - 10	-	2tcycp - 10	-	ns
Serial clock H pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	1	t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
SCK ↓ → SOT delay time	t _{SLOVE}	SCKx, SOTx		-	75	-	50	-	30	ns
SIN → SCK ↑ setup time	tivshe	SCKx, SINx	Slave mode	10	-	10	-	10	-	ns
$\begin{array}{c} SCK \uparrow \to SIN \\ hold\ time \end{array}$	tshixe	SCKx, SINx		20	-	20	-	20	-	ns
SCK falling time	t _F	SCKx		-	5	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	-	5	ns

- The above characteristics apply to clock synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 pF$.

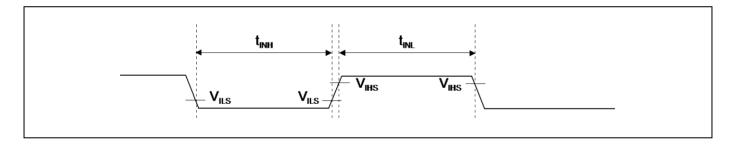


UART external clock input (EXT = 1)

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Conditions	Va	lue	Unit	Remarks
i arameter	Cyllibol	Conditions	Min	Max	Oilit	Remarks
Serial clock L pulse width	t _{SLSH}		t _{CYCP} + 10	-	ns	
Serial clock H pulse width	tshsl	C. = 50 pF	tcycp + 10	-	ns	
SCK falling time	t _F	C _L = 50 pF	-	5	ns	
SCK rising time	t _R		-	5	ns	

12.4.10 External Input Timing


$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$$

_				Value			
Parameter	Symbol	Pin name	Conditions	Min	Max	Unit	Remarks
		ADTG		0. *1			A/D converter trigger input
		FRCKx] -	2tcycp*1	-	ns	Free-run timer input clock
		ICxx					Input capture
Input pulse width	tinh,	DTTIxX	-	2t _{CYCP} *1	-	ns	Waveform generator
	tinl	IGTRG	-	2tcycp*1	1	ns	PPG IGBT mode
			*2	2tcycp + 100*1	-	ns	External interrupt,
		NMIX	*3	500	1	ns	NMI
			*4	500	-	ns	Deep standby wake up

^{*1:} t_{CYCP} indicates the APB bus clock cycle time.

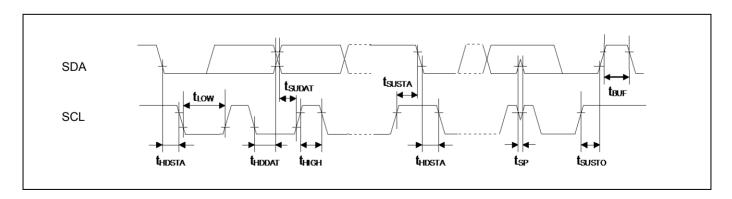
About the APB bus number which the A/D converter, Multi-function Timer, PPG, External interrupt, Deep Standby mode Controller are connected to, see Block Diagram in this data sheet.

- *2: When in Run mode, in Sleep mode.
- *3: When in Timer mode, in RTC mode, in Stop mode.
- *4: When in Deep Standby RTC mode, in Deep Standby Stop mode.

Document Number: 002-05675 Rev.*D Page 72 of 99

12.4.11 I²C Timing

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

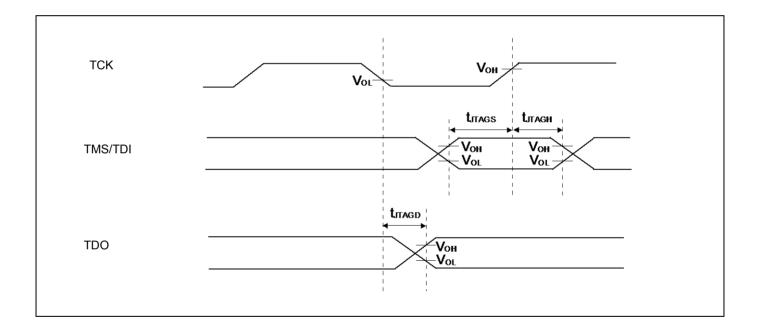

Parameter	Cumbal	Conditions	Standar	d-mode	Fast-	mode	Unit	Remarks
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit	Remarks
SCL clock frequency	fscL		0	100	0	400	kHz	
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0	-	0.6	-	μs	
SCL clock L width	tLOW		4.7	-	1.3	-	μs	
SCL clock H width	t _{HIGH}		4.0	-	0.6	•	μs	
(Repeated) START condition setup time $SCL \uparrow \rightarrow SDA \downarrow$	tsusta	C _L = 50 pF,	4.7	-	0.6	-	μs	
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	thddat	$R = (V_P/I_{OL})^{*1}$	0	3.45*2	0	0.9*3	μs	
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	tsudat		250	-	100	-	ns	
STOP condition setup time $SCL \uparrow \rightarrow SDA \uparrow$	tsusто		4.0	•	0.6	•	μs	
Bus free time between STOP condition and START condition	tBUF		4.7	-	1.3	-	μs	
Noise filter	t _{SP}	-	2 tcycp*4	-	2 tcycp*4	-	ns	

- *1: R and C_L represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively. V_P indicates the power supply voltage of the pull-up resistor and I_{OL} indicates V_{OL} guaranteed current.
- *2: The maximum thddat must satisfy that it does not extend at least L period (tLow) of device's SCL signal.
- *3: A Fast-mode I²C bus device can be used on a Standard-mode I²C bus system as long as the device satisfies the requirement of t_{SUDAT} ≥ 250 ns.
- *4: tcycp is the APB bus clock cycle time.

About the APB bus number which I2C is connected to, see Block Diagram in this data sheet.

To use Standard-mode, set the APB bus clock at 2 MHz or more.

To use Fast-mode, set the APB bus clock at 8 MHz or more.


12.4.12 JTAG Timing

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
Faranietei	Syllibol	Fill lialite	Conditions	Min	Max	Ullit	Remarks
TMS,TDI setup	t JTAGS	TCK,	V _{CC} ≥ 4.5 V	15	_	ns	
time	UTAGS	TMS,TDI	V _{CC} < 4.5 V	15	-	113	
TMS,TDI hold	4	TCK,	V _{CC} ≥ 4.5 V	15		ns	
time	t jtagh	TMS,TDI	Vcc < 4.5 V		-		
		TOK	V _{CC} ≥ 4.5 V	-	30		
TDO delay time	I)() delay time I titach I	TCK, TDO	2.7 V ≤V _{CC} < 4.5 V	-	45	ns	
		1.20	Vcc < 2.7 V	-	60		

Note:

- When the external load capacitance $C_L = 50 pF$.

12.5 12-bit A/D Converter

Electrical Characteristics for the A/D Converter

 $(V_{CC} = AV_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Cumbal	Pin		Value		Unit	Remarks
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	12	bit	
Integral Nonlinearity	INL	_	-	± 2.5	± 3.0	LSB	AV _{CC} ≥ 2.7 V
integral Nornineanty	IINL	_	-	± 3.5	± 4.0	LSB	AV _{CC} < 2.7 V
Differential Neplinearity	DNL		-	± 1.8	± 1.9	LSB	AV _{CC} ≥ 2.7 V
Differential Nonlinearity	DINL	-	-	± 2.7	± 2.9	LSB	AV _{CC} < 2.7 V
Zero transition voltage	V _{ZT}	ANxx	-	± 9	± 20	mV	
Full-scale transition voltage	V _{FST}	ANxx	-	AVRH ± 9	AVRH ± 20	mV	
Conversion time*1			1.0				AV _{CC} ≥ 2.7 V
Conversion time	-	-	4.0	-	-	μs	AV _{CC} < 2.7 V
Compaling times*2	ts		0.3		- 10 μs		AV _{CC} ≥ 2.7 V
Sampling time*2		-	1.2	_ <u>-</u>		μs	AV _{CC} < 2.7 V
0		-	50		4000		AV _{CC} ≥ 2.7 V
Compare clock cycle*3	tcck		200	-	1000	ns	AV _{CC} < 2.7 V
Period of operation enable state transitions	tsтт	-	-	-	1	μs	
Analog input capacity	C _{AIN}	-	-	-	15	pF	
					0.9		AV _{CC} ≥ 4.5 V
Analog input resistor	RAIN	-	-	-	1.6	kΩ	2.7 V ≤ AV _{CC} < 4.5 V
					4.0		AV _{CC} < 2.7 V
Interchannel disparity	-	-	-	-	4	LSB	
Analog port input leak current	-	ANxx	-	-	0.3	μΑ	
Analog input voltage	-	ANxx	AVss	-	AVRH	V	
Deference valtere		A) /DLI	2.7		A) /	\/	AV _{CC} ≥ 2.7 V
Reference voltage	-	AVRH	AVcc	-	AV _{CC}	V	AV _{CC} < 2.7 V

^{*1:} The conversion time is the value of sampling time (ts) + compare time (tc).

The condition of the minimum conversion time is the following.

 $AV_{CC} \ge 2.7$ V, HCLK=20 MHz sampling time: 0.3 µs, compare time: 0.7 µs sampling time: 1.2 µs, compare time: 2.8 µs

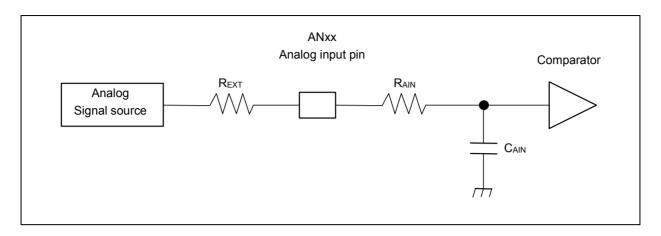
Ensure that it satisfies the value of the sampling time (ts) and compare clock cycle (tcck).

For setting*4 of the sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family Peripheral Manual Analog Macro Part.

The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.

For the number of the APB bus to which the A/D Converter is connected, see Block Diagram.

The Base clock (HCLK) is used to generate the sampling time and the compare clock cycle.


*2: A necessary sampling time changes by external impedance.

Ensure to set the sampling time to satisfy (Equation 1).

*3: The compare time (t_C) is the value of (Equation 2).

Document Number: 002-05675 Rev.*D Page 75 of 99

(Equation 1) t_S ≥ (R_{AIN} + R_{EXT}) × C_{AIN} × 9

ts: Sampling time

R_{AIN}: input resistor of A/D = $0.9 \text{ k}\Omega$ at $4.5 \text{ V} \le \text{AV}_{CC} \le 5.5 \text{ V}$

input resistor of A/D = 1.6 k Ω at 2.7 V \leq AV $_{CC}$ < 4.5 V

input resistor of A/D = 4.0 k Ω at 1.8 V \leq AV_{CC} < 2.7 V

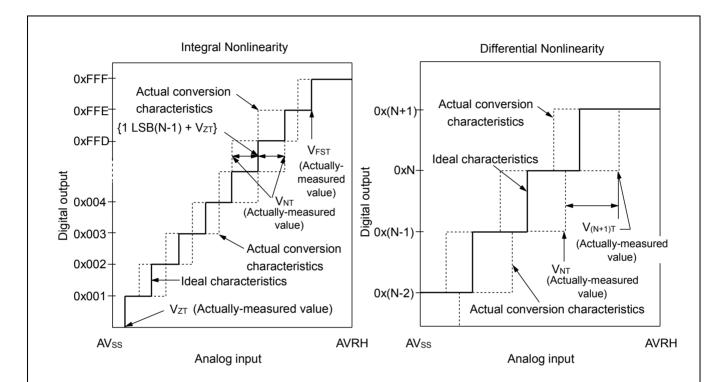
 C_{AIN} : input capacity of A/D = 15 pF at 1.8 V \leq AV_{CC} \leq 5.5 V

R_{EXT}: Output impedance of external circuit

(Equation 2) $t_C = t_{CCK} \times 14$

t_C: Compare time

t_{CCK}: Compare clock cycle


Definition of 12-bit A/D Converter Terms

Resolution: Analog variation that is recognized by an A/D converter.
 Integral Nonlinearity: Deviation of the line between the zero-transition point

 $(0b0000000000000\longrightarrow 0b000000000001)$ and the full-scale transition point $(0b1111111111100\longrightarrow 0b111111111111)$ from the actual conversion characteristics.

• Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change

the output code by 1 LSB.

Integral Nonlinearity of digital output N =
$$\frac{V_{NT} - \{1LSB \times (N-1) + V_{ZT}\}}{1LSB}$$
 [LSB]

Differential Nonlinearity of digital output N =
$$\frac{V_{(N+1)T} - V_{NT}}{1LSB} - 1 [LSB]$$

$$1LSB = \frac{V_{FST} - V_{ZT}}{4094}$$

N: A/D converter digital output value.

VzT: Voltage at which the digital output changes from 0x000 to 0x001. VFST: Voltage at which the digital output changes from 0xFFE to 0xFFF. VNT: Voltage at which the digital output changes from 0x(N-1) to 0xN.

12.6 10-bit D/A Converter

Electrical Characteristics for the D/A Converter

(V_{CC} = AV_{CC} = 1.8V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40°C to +85°C)

Parameter	Symbol	Pin name		Value		Unit	Remarks
Parameter	Syllibol	Pili lialile	Min	Тур	Max	Offic	Remarks
Resolution	-		-	-	10	bit	
Conversion time	t _{C20}		0.37	0.53	0.69	μs	Load 20 pF
Conversion time	t _{C100}		1.87	2.67	3.47	μs	Load 100 pF
Integral Nonlinearity	INL		-4.0	-	+4.0	LSB	*
Differential Nonlinearity	DNL		-0.9	-	+0.9	LSB	*
Output Voltage offset	V _{OFF}	DAx	-	1	10.0	mV	Code is 0x000
Output voltage offset	VOFF		-50.0	1	+5.5	mV	Code is 0x3FF
Analog output	Ro		2.45	3.50	5.5	kΩ	D/A operation
impedance	KO .		5.0	9.0	-	ΜΩ	D/A stop
Output undefined period	t _R		-	1	250	ns	

^{*:} No-load

Document Number: 002-05675 Rev.*D Page 78 of 99

12.7 Low-Voltage Detection Characteristics

12.7.1 Low-Voltage Detection Reset

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Conditions	Value			Unit	Remarks
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Detected voltage	V _{DLR}	SVHR = 0001	1.43	1.53	1.63	V	When voltage drops
Released voltage	V_{DHR}	3VHK - 0001	1.53	1.63	1.73	V	When voltage rises
Detected voltage	V _{DLR}	SVHR = 0100	1.80	1.93	2.06	V	When voltage drops
Released voltage	V _{DHR}	3VIK = 0100	1.90	2.03	2.16	V	When voltage rises
LVD stabilization wait time	t _{LVDRW}	-	1	-	633 × tcycp*	μs	
Detection delay time	tuvdrd	dV/dt ≥ -4mV/μs	-	-	60	μs	

^{*:} t_{CYCP} indicates the APB2 bus clock cycle time.

Document Number: 002-05675 Rev.*D Page 79 of 99

12.7.2 Interrupt of Low-Voltage Detection

Normal mode

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

D	0	0		Val	ue	11!4	Pomorko
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Detected voltage	V _{DLI}	0)/111 - 0000	1.87	2.00	2.13	V	When voltage drops
Released voltage	V_{DHI}	SVHI = 0000	1.97	2.10	2.23	V	When voltage rises
Detected voltage	V _{DLI}	0)/111 - 0004	1.96	2.10	2.24	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 0001	2.06	2.20	2.34	V	When voltage rises
Detected voltage	V _{DLI}	0)/111 - 0040	2.05	2.20	2.35	V	When voltage drops
Released voltage	V_{DHI}	SVHI = 0010	2.15	2.30	2.45	V	When voltage rises
Detected voltage	V _{DLI}	C)/UI = 0011	2.15	2.30	2.45	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 0011	2.25	2.40	2.55	V	When voltage rises
Detected voltage	V _{DLI}	0)/111 - 0400	2.24	2.40	2.56	V	When voltage drops
Released voltage	V_{DHI}	SVHI = 0100	2.34	2.50	2.66	V	When voltage rises
Detected voltage	V _{DLI}	0)/111 - 0404	2.33	2.50	2.67	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 0101	2.43	2.60	2.77	V	When voltage rises
Detected voltage	V _{DLI}	0)/111 = 0440	2.43	2.60	2.77	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 0110	2.53	2.70	2.87	V	When voltage rises
Detected voltage	V _{DLI}	0)/111 - 0444	2.61	2.80	2.99	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 0111	2.71	2.90	3.09	V	When voltage rises
Detected voltage	V _{DLI}	0)/111 - 4000	2.80	3.00	3.20	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 1000	2.90	3.10	3.30	V	When voltage rises
Detected voltage	V _{DLI}	C)/UI = 1001	2.99	3.20	3.41	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 1001	3.09	3.30	3.51	V	When voltage rises
Detected voltage	V_{DLI}	SVHI = 1010	3.36	3.60	3.84	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 1010	3.46	3.70	3.94	V	When voltage rises
Detected voltage	V _{DLI}	SVHI = 1011	3.45	3.70	3.95	V	When voltage drops
Released voltage	V _{DHI}	3001 - 1011	3.55	3.80	4.05	V	When voltage rises
Detected voltage	V_{DLI}	C)/UI = 1100	3.73	4.00	4.27	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 1100	3.83	4.10	4.37	V	When voltage rises
Detected voltage	V_{DLI}	C)/LI = 1101	3.83	4.10	4.37	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 1101	3.93	4.20	4.47	V	When voltage rises
Detected voltage	V_{DLI}	CV/LI = 1110	3.92	4.20	4.48	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 1110	4.02	4.30	4.58	V	When voltage rises
LVD stabilization wait time	t _{LVDIW}	-	-	-	633 × tcycp*	μs	
Detection delay time	tlvdid	dV/dt ≥ - 4mV/μs	-	-	60	μs	

^{*:} tcycp indicates the APB2 bus clock cycle time.

Document Number: 002-05675 Rev.*D Page 80 of 99

Low power mode

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Donomotor	Cumahal	Conditions		Value)	11!4	D
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Detected voltage	V _{DLIL}	SVHI = 0000	1.80	2.00	2.20	>	When voltage drops
Released voltage	V _{DHIL}	3VHI - 0000	1.90	2.10	2.30	V	When voltage rises
Detected voltage	V _{DLIL}	SVHI = 0001	1.89	2.10	2.31	V	When voltage drops
Released voltage	V _{DHIL}	3VHI = 0001	1.99	2.20	2.41	V	When voltage rises
Detected voltage	V _{DLIL}	CV/LII = 0010	1.98	2.20	2.42	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 0010	2.08	2.30	2.52	V	When voltage rises
Detected voltage	V _{DLIL}	CV/LII = 0011	2.07	2.30	2.53	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 0011	2.17	2.40	2.63	V	When voltage rises
Detected voltage	V_{DLIL}	0)/111 - 0400	2.16	2.40	2.64	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 0100	2.26	2.50	2.74	V	When voltage rises
Detected voltage	V_{DLIL}	01/11 - 0404	2.25	2.50	2.75	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 0101	2.35	2.60	2.85	V	When voltage rises
Detected voltage	V_{DLIL}	0)// // 0440	2.34	2.60	2.86	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 0110	2.44	2.70	2.96	V	When voltage rises
Detected voltage	V_{DLIL}	0)// // 0444	2.52	2.80	3.08	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 0111	2.62	2.90	3.18	V	When voltage rises
Detected voltage	V_{DLIL}		2.70	3.00	3.30	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1000	2.80	3.10	3.40	V	When voltage rises
Detected voltage	V _{DLIL}	0\/ = 4004	2.88	3.20	3.52	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1001	2.98	3.30	3.62	V	When voltage rises
Detected voltage	V _{DLIL}	0)// // 4040	3.24	3.60	3.96	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1010	3.34	3.70	4.06	V	When voltage rises
Detected voltage	V _{DLIL}	0)// 4044	3.33	3.70	4.07	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1011	3.43	3.80	4.17	V	When voltage rises
Detected voltage	V _{DLIL}	0) (111 4400	3.60	4.00	4.40	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1100	3.70	4.10	4.50	V	When voltage rises
Detected voltage	V _{DLIL}	CV/III = 4404	3.69	4.10	4.51	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1101	3.79	4.20	4.61	V	When voltage rises
Detected voltage	V_{DLIL}	0)// // 4440	3.78	4.20	4.62	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1110	3.88	4.30	4.72	V	When voltage rises
LVD stabilization wait time	t _{LVDILW}	-	-	-	8039 × t _{CYCP} *	μs	
Detection delay time	tuvdild	dV/dt ≥ - 0.4mV/μs	-	-	800	μs	

^{*:} tcycp indicates the APB2 bus clock cycle time.

Document Number: 002-05675 Rev.*D Page 81 of 99

12.8 Flash Memory Write/Erase Characteristics

12.8.1 Write / Erase time

 $(V_{CC} = 2.0V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Doro	Parameter		lue	l lmi4	Domonico		
Para	meter	Тур*	Max* Unit		Remarks		
Sector erase	Large Sector	1.6	7.5		Includes write time prior to internal areas		
time	Small Sector	0.4	2.1	S	Includes write time prior to internal erase		
Half word (16-l write time	bit)	25	400	μs	Not including system-level overhead time.		
Chip erase tim	e	4	19.2	s	Includes write time prior to internal erase		

^{*:} The typical value is immediately after shipment, the maximam value is guarantee value under 100,000 cycle of erase/write.

12.8.2 Write cycles and data hold time

Erase/write cycles (cycle)	Data hold time (year)	Remarks
1,000	20 *	
10,000	10 *	
100,000	5*	

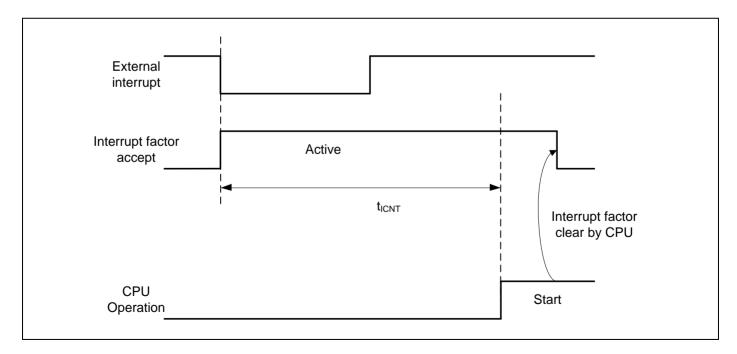
^{*:} At average + 85°C

Document Number: 002-05675 Rev.*D Page 82 of 99

12.9 Return Time from Low-Power Consumption Mode

12.9.1 Return Factor: Interrupt/WKUP

The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation.

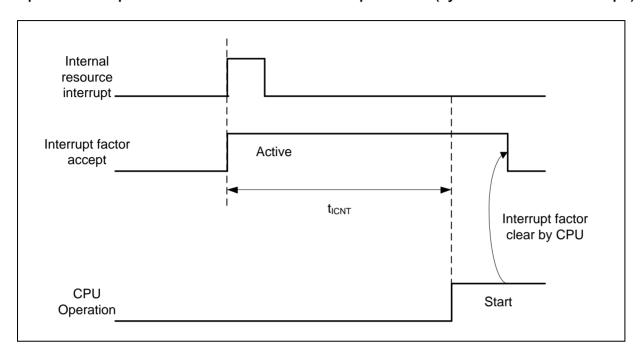

Return Count Time

 $(V_{CC} = 1.65V \text{ to } 3.6V, V_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$

Danamatan	0	Valu	ne	1114	D sules
Parameter	Symbol	Тур	Max*	Unit	Remarks
Sleep mode		toyo	CC	μs	
High-speed CR Timer mode, Main Timer mode, PLL Timer mode		40	80	μs	
Low-speed CR Timer mode	t	630	1260	μs	
Sub Timer mode	ticnt	630	1260	μs	
RTC mode, Stop mode		1083	2100	μs	
Deep Standby RTC mode Deep Standby Stop mode		1099	2127	μs	

^{*:} The maximum value depends on the accuracy of built-in CR.

Operation example of return from Low-Power consumption mode (by external interrupt*)



^{*:} External interrupt is set to detecting fall edge.

Document Number: 002-05675 Rev.*D Page 83 of 99

Operation example of return from Low-Power consumption mode (by internal resource interrupt*)

^{*:} Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.

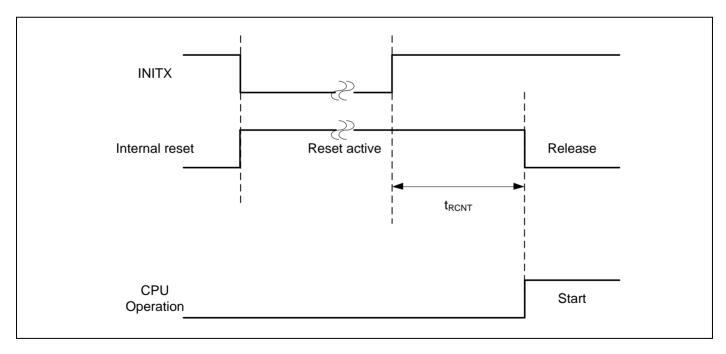
Notes:

- The return factor is different in each Low-Power consumption modes.
 See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual.
- When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual.

Document Number: 002-05675 Rev.*D

12.9.2 Return Factor: Reset

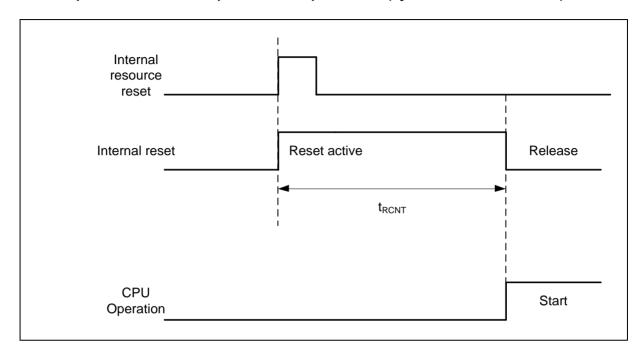
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.


Return Count Time

$$(V_{CC} = 1.65V \text{ to } 3.6V, V_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$$

		Va	alue		Remarks
Parameter	Symbol	Тур	Max*	Unit	
Sleep mode		359	647	μs	
High-speed CR Timer mode, Main Timer mode, PLL Timer mode		359	647	μs	
Low-speed CR Timer mode	tront	929	1787	μs	
Sub Timer mode	UNOINT	929	1787	μs	
RTC/Stop mode		1099	2127	μs	
Deep Standby RTC mode Deep Standby Stop mode		1099	2127	μs	

^{*:} The maximum value depends on the accuracy of built-in CR.


Operation example of return from Low-Power consumption mode (by INITX)

Document Number: 002-05675 Rev.*D Page 85 of 99

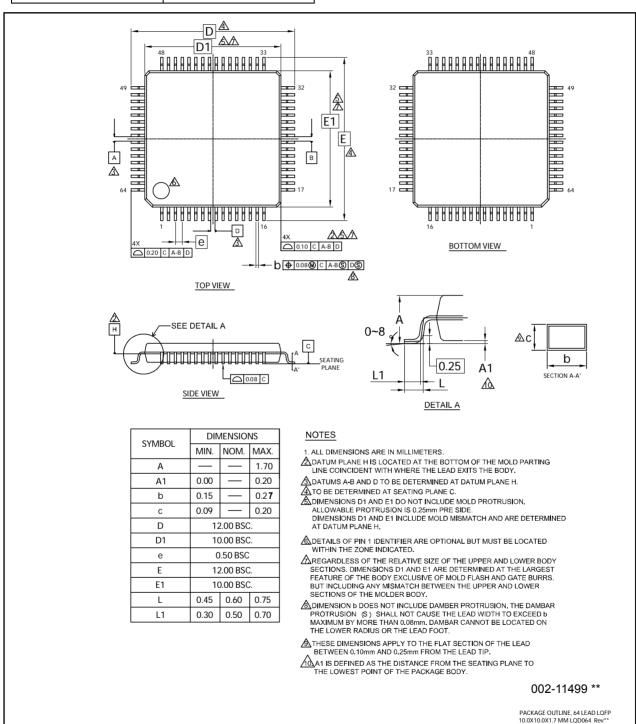
Operation example of return from low power consumption mode (by internal resource reset*)

^{*:} Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.

Notes:

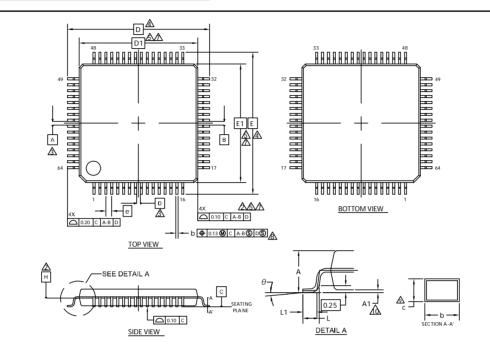
- The return factor is different in each Low-Power consumption modes.
 See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual.
- When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual.
- The time during the power-on reset/low-voltage detection reset is excluded. See (12.4.7)
 Power-on Reset Timing in 12.4 AC Characteristics in Electrical Characteristics for the detail on the time during the power-on reset/low-voltage detection reset.
- When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the Main PLL clock stabilization wait time.
- The internal resource reset means the watchdog reset and the CSV reset.

13. Ordering Information


Part number	On-chip Flash memory	On-chip SRAM	Package	Packing
MB9AF1A1LPMC1-G-SNE2	64 Kbyte	12 Kbyte	Plastic • LQFP	
MB9AF1A2LPMC1-G-SNE2	128 Kbyte	16 Kbyte	(0.5mm pitch), 64-pin (LQD064)	
MB9AF1A1LPMC-G-SNE2	64 Kbyte	12 Kbyte	Plastic • LQFP	
MB9AF1A2LPMC-G-UNE2	128 Kbyte	16 Kbyte	(0.65mm pitch), 64-pin (LQG064)	
MB9AF1A1MPMC-G-UNE2	64 Kbyte	12 Kbyte	Plastic • LQFP	
MB9AF1A2MPMC-G-UNE2	128 Kbyte	16 Kbyte	(0.5mm pitch), 80-pin (LQH080)	
MB9AF1A1MPMC1-G-SNE2	64 Kbyte	12 Kbyte	Plastic • LQFP	Tray
MB9AF1A2MPMC1-G-UNE2	128 Kbyte	16 Kbyte	(0.65mm pitch), 80-pin (LQJ080)	
MB9AF1A1NPMC-G-SNE2	64 Kbyte	12 Kbyte	Plastic • LQFP	
MB9AF1A2NPMC-G-UNE2	128 Kbyte	16 Kbyte	(0.5mm pitch), 100-pin (LQI100)	
MB9AF1A1NPF-G-SNE1	64 Kbyte	12 Kbyte	Plastic • QFP	
MB9AF1A2NPF-G-SNE1	128 Kbyte	16 Kbyte	(0.65mm pitch), 100-pin (PQH100)	

Document Number: 002-05675 Rev.*D Page 87 of 99

14. Package Dimensions

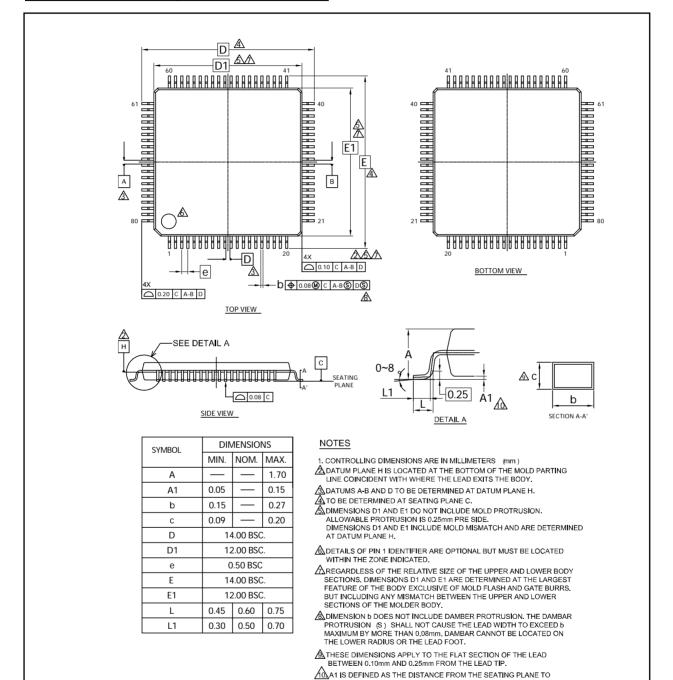

Package Type	Package Code
LQFP 64	LQD064

Document Number: 002-05675 Rev.*D

Package Type	Package Code
LQFP 64	LQG064

SYMBOL	DIMENSION		
STIVIBUL	MIN. NOM. MAX		MAX.
А	_		1.70
A1	0.00		0.20
b	0.27	0.32	0.37
С	0.09		0.20
D	14.00 BSC		
D1	12.00 BSC		
е	0.65 BSC		
E	14.00 BSC		
E1	12.00 BSC		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70
θ	0°	_	8°

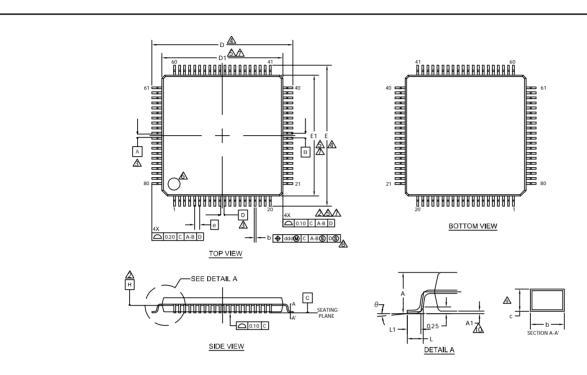
NOTES


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠ DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- ⚠ TO BE DETERMINED AT SEATING PLANE C.
- ⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS, DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-13881 **

PACKAGE OUTLINE, 64 LEAD LQFP 12.0X12.0X1.7 MM LQG064 REV**

Package Type	Package Code
LQFP 80	LQH080


THE LOWEST POINT OF THE PACKAGE BODY.

12.0X12.0X1.7 MM LQH080 Rev **

002-11501 **
PACKAGE OUTLINE, 80 LEAD LOFP

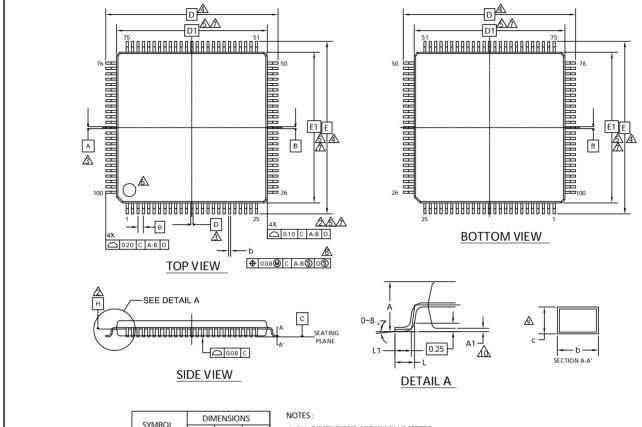
Package Type	Package Code
LQFP 80	LQJ080

SYMBOL	DIMENSIONS		
STIVIBUL	MIN. NOM. MAX		MAX.
Α	_		1.70
A1	0.00		0.20
b	0.16	0.32	0.38
С	0.09	_	0.20
D	16.00 BSC		
D1	14.00 BSC		
е	0.65 BSC		
E	16.00 BSC		
E1	14.00 BSC		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70
θ	0°	_	8°

NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠ DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- 10 BE DETERMINED AT SEATING PLANE C.
- ⚠DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.

 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.

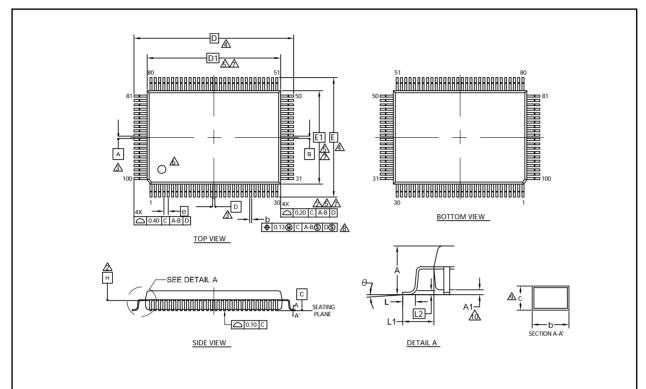

 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMI
 - DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS, DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm, DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-14043 **

PACKAGE OUTLINE, 80 LEAD LQFP 14.0X14.0X1.7 MM LQJ080 REV**

Package Type	Package Code
LQFP 100	LQI100

-	SYMBOL	DIMENSIONS		
	STIVIBUL	MIN.	NOM.	MAX.
	Α			1.70
	A1	0.05	_	0.15
	b	0.15	_	0.27
	С	0.09 — (0.20
	D	16.00 BSC		
	D1	14.00 BSC		
ſ	е	0.50 BSC		
	Ε	16.00 BSC		
	E1	14.00 BSC		
	L	0.45	0.60	0.75
	L1	0.30	0.50	0.70


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ÀDATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- MIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 - DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- <u>©</u>DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- /hese dimensions apply to the flat section of the lead Between 0.10mm and 0.25mm from the lead tip.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-11500 *A

PACKAGE OUTLINE, 100 LEAD LQFP 14.0X14.0X1.7 MM LQI100 REV*A

Package Type	Package Code
QFP 100	PQH100

SYMBOL	DIMENSIONS		
STIVIBUL	MIN. NOM. MA		MAX.
Α		_	3.35
A1	0.05	_	0.45
b	0.27	0.32	0.37
С	0.11	_	0.23
D	23.90 BSC		
D1	20.00 BSC		
е	0.65 BSC		
E	11	7.90 BS0)
E1	14.00 BSC)
θ	0° - 8		
L	0.73	0.88	1.03
L1	1.95 REF		
L2	0.25 BSC		

NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ADATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- ATO BE DETERMINED AT SEATING PLANE C.

 DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- <u>Ô</u>LA1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-15156 **

PACKAGE OUTLINE, 100 LEAD QFP 20.00X14.00X3.35 MM PQH100 REV**

15. Errata

This chapter describes the errata for MB9A1A0N Series. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

15.1 Part Numbers Affected

Part Number		
Initial Revision		
MB9AF1A1LPMC1-G-SNE2, MB9AF1A2LPMC1-G-SNE2, MB9AF1A1LPMC-G-SNE2, MB9AF1A2LPMC-G-SNE2, MB9AF1A2LPMC-G-UNE2, MB9AF1A1MPMC-G-SNE2, MB9AF1A1MPMC-G-UNE2, MB9AF1A2MPMC-G-SNE2, MB9AF1A2MPMC-G-UNE2, MB9AF1A1MPMC1-G-SNE2, MB9AF1A2MPMC1-G-SNE2, MB9AF1A2MPMC1-G-UNE2, MB9AF1A1MPMC1-G-SNE2, MB9AF1A2MPMC1-G-UNE2,		
MB9AF1A1NPMC-G-SNE2, MB9AF1A2NPMC-G-SNE2, MB9AF1A2NPMC-G-UNE2, MB9AF1A1NPF-G-SNE1, MB9AF1A2NPF-G-SNE1		

15.2 Qualification Status

Product Status: In Production - Qual.

15.3 Errata Summary

This table defines the errata applicability to available devices.

Items	Part Number	Silicon Revision	Fix Status
[15.4.1] HDMI-CEC polling message issue	Refer to 15.1	Initial Rev	Next silicon is not planned
[15.4.2] RTC delay issue	Refer to 15.1	Initial Rev	Next silicon is not planned

15.4 Errata Detail

15.4.1 HDMI-CEC polling message issue

■PROBLEM DEFINITION

Error#1) While MCU sends a Polling Message, it always returns a NACK to a message coming to the MCU from another node. Error#2) MCU always waits for 7-bit signal free on CEC line before it drives the line even when the last line initiator was another node.

■PARAMETERS AFFECTED

N/A

■TRIGGER CONDITION(S)

This error always happens.

■SCOPE OF IMPACT

MCU does not reply properly to another node.

■WORKAROUND

The software workaround is applied to Error #1.

- 1. Store 0x0 to SFREE register.
- 2. Monitor CEC line with GPIO and wait until 1 lasts for the signal free time.
- 3. Store frame data to TXDATA register and store 0x0F to RCADR1 or RCADR2 register.

It sends a message after 3~4 clocks of 32.768 kHz clock when TXDATA is stored 0x0F.

Document Number: 002-05675 Rev.*D Page 94 of 99

If the device receives a frame from another node within 2~3 clocks after storing TXDATA, the bus error occurs and if the device receives a frame from another node within 3~4 clocks after storing TXDATA, the arbitration lost occurs. In these cases:

- 4-A-1. Set RCADR1 or RCADR2 to former value from 0x0F to reply ACK
- 4-A-2. Return back to step 2 above

If the device receives a frame from another node within 1~2 clocks after storing TXDATA, take these steps.

- 4-B-1. Monitor CEC line with GPIO after 50us from storing TXDATA
- 4-B-2. Set TXEN to 1 -> 0 -> 1 immediately when GPIO finds state low on the CEC line
- 4-B-3. Set RCADR1 or RCADR2 to former value from 0x0F to reply ACK
- 4-B-4. Return back to step 2 above

For Error #2, there is no software workaround, but signal free time of fixed 7-bit does not violate HDMI-CEC specification. The specification says signal free time must be more than and equals to 5-bit.

■FIX STATUS

The user uses the workaround to avoid the issue. The next silicon fixing the issue is not planned.

15.4.2 RTC delay issue

■PROBLEM DEFINITION

RTC delays when software reset or APB2 reset occurs.

■PARAMETERS AFFECTED

N/A

■TRIGGER CONDITION(S)

This error happens when software reset or APB2 reset occurs.

■SCOPE OF IMPACT

RTC delays and does not time correctly.

■WORKAROUND

RTC block is supplied with sub-clock. Both software reset and APB2 reset disable two clocks of sub-clock to RTC block. The workaround is to count occurrence of software and APB2 reset and calculate how many clocks of sub-clock were disabled and add one second to RTC counter when accumulated disabled sub-clock period reaches one second.

■FIX STATUS

The user uses the workaround to avoid the issue. The next silicon fixing the issue is not planned.

Document Number: 002-05675 Rev.*D Page 95 of 99

Major Changes

Spansion Publication Number: DS706-00068

Page	Section	Change Results
Revision	0.1	
-	-	Initial release
Revision	1.0	
-	-	Changed from Preliminary to Full Producton
-	-	Deleted a part of QFN
43	BLOCK DIAGRAM	Added note for MB9AF1AxL
58,59	ELECTRICAL CHARACTERISTICS 3.DC Characteristics (1) Current Rating	Revised the values of "TBD"
Revision	2.0	
2	Features · On-chip Memories	Changed the description of on-chip SRAM
7 - 31	Packages Pin Assignment List of Pin Functions	Deleted QFN package
40	Handling Devices Crystal oscillator circuit	Added the following description "Evaluate oscillation of your using crystal oscillator by your mount board."
44	Memory Map · Memory map(2)	Added the summary of Flash memory sector
57 - 59	Electrical Characteristics 3. DC Characteristics (1) Current rating	Changed the table format Added Main Timer mode current Added Flash Memory Current Moved A/D Converter Current Moved D/A Converter Current
60	Electrical Characteristics 3. DC Characteristics (2) Pin Characteristics	Added the input leak current of CEC port at power off
63	Electrical Characteristics 4. AC Characteristics (4-1) Operating Conditions of Main PLL (4-2) Operating Conditions of Main PLL	· Added the figure of Main PLL connection
64	Electrical Characteristics 4. AC Characteristics (6) Power-on Reset Timing	Changed the figure of timing Changed from Reset release delay time(tond) to Time until releasing Power-on reset(tender)
66 - 73	Electrical Characteristics 4. AC Characteristics (8) CSIO/UART Timing	Modified from UART Timing to CSIO/UART Timing Changed from Internal shift clock operation to Master mode Changed from External shift clock operation to Slave mode
77	Electrical Characteristics 5. 12bit A/D Converter	 Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero transition voltage and Full-scale transition voltage Added Conversion time at AV_{CC} < 2.7 V
81	Electrical Characteristics 7. Low-voltage Detection Characteristics	Deleted the figure
84	Electrical Characteristics 8. Flash Memory Write/Erase Characteristics	Change to the erase time of include write time prior to internal erase

Document Number: 002-05675 Rev.*D

Page	Section	Change Results
85 - 88	Electrical Characteristics 9. Return Time from Low-Power Consumption Mode	Added Return Time from Low-Power Consumption Mode
89	Ordering Information	Changed notation of part number

NOTE: Please see "Document History" about later revised information.

Document Number: 002-05675 Rev.*D Page 97 of 99

Document History

Document Title: MB9A1A0N Series 32-bit Arm® Cortex®-M3 FM3 Microcontroller

Document Number: 002-05675

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	1	AKIH	06/30/2015	Migrated to Cypress and assigned document number 002-05675. No change to document contents or format.
*A	5193131	AKIH	03/31/2016	Updated to Cypress format.
*B	5513616	HTER	02/08/2017	Modified RTC description in "Features, Real-Time Clock(RTC)". Changed starting count value from 01 to 00. Deleted "second, or day of the week" in the Interrupt function. (Page 2) Changed package code as the following table in following section. 2. Package (Page 7) 3. Pin Assignment (Page 8 -11) 12. Electrical Characteristics (Page 53) 13. Ordering Information (Page 87) 14. Package Dimensions (Page 88 - 93) Before After FPT-64P-M38 LQD064 FPT-80P-M37 LQH080 FPT-80P-M40 LQJ080 FPT-100P-M23 LQI100 FPT-100P-M23 LQI100 FPT-100P-M06 PQH100 Added the Baud rate spec in "12.4.9 CSIO/UART Timing" (Page 64 - 70) Changed Part numbers in 13. Ordering Information (Page 87) "MB9AF1A2LPMC-G-SNE2" to "MB9AF1A2LPMC-G-UNE2" "MB9AF1A2MPMC-G-SNE2" to "MB9AF1A2NPMC-G-UNE2" "MB9AF1A2NPMC-G-SNE2" to "MB9AF1A2NPMC-G-UNE2" "MB9AF1A2MPMC-G-SNE2" to "MB9AF1A2MPMC1-G-UNE2" "MB9AF1A2MPMC1-G-SNE2" to "MB9AF1A2MPMC1-G-UNE2" "MB9AF1A2MPMC1-G-SNE2" to "MB9AF1A2MPMC1-G-UNE2" "MB9AF1A2MPMC1-G-SNE2" to "MB9AF1A2MPMC1-G-UNE2" "MB9AF1A2MPMC1-G-SNE2" to "MB9AF1A2MPMC1-G-UNE2" Added 15. Errata (Page 94 - 95)
*C	5768635	YSAT	06/12/2017	Adapted new cypress logo
*D	5929772	HTER	10/16/2017	Corrected the following Analog output impedance MAX value (D/A operation) $4.55 \text{k}\Omega \rightarrow 5.5 \text{k}\Omega$ in chapter 12.6 10-bit D/A Converter.

Document Number: 002-05675 Rev.*D Page 98 of 99

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/wireless

Products

Wireless/RF

ARM® Cortex® Microcontrollers cvpress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontroller cypress.com/mcu **PSoC** cypress.com/psoc Powermanagement ICs cypress.com/pmic **Touch Sensing** cypress.com/touch **USB Controllers** cypress.com/usb

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-05675 Rev.*D October 16, 2017 Page 99 of 99