ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (VDD to VSS)	
IN_+, IN, OUT_, SHDN(VSS - 0.3V)) to $(V_{DD} + 0.3V)$
Current into IN_+, IN	±20mA
Output Short-Circuit Duration to VDD or VSS	Continuous
Continuous Power Dissipation (T _A = +70°C)	
5-Pin SC70 (derate 3.1mW/°C above +70°C)	247mW
6-Bump WLP (derate 10.5mW/°C above +70	°C)840mW
6-Pin SC70 (derate 3.1mW/°C above +70°C)	245mW

8-Pin SOT23 (derate 9.1mW/°C above +70°C) 727mW
10-Pin μMAX (derate 5.6mW/°C above +70°C)444mW
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (excluding WLP, soldering 10s)+300°C
Soldering Temperature (reflow)
Lead(Pb)-Free Packages+260°C
Packages Containing Lead(Pb)+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD} / 2, R_L = \infty \text{ connected to } V_{DD} / 2, \overline{SHDN} = V_{DD}, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRR	test	1.8		5.5	V
		MAX9910/MAX9911	$V_{DD} = 1.8V$		4		
Supply Current	loo		$V_{DD} = 5.5V$		4	5.0	
Supply Current	IDD	MAX9912/MAX9913	$V_{DD} = 1.8V$		7		μΑ
		WAX9912/WAX9913	$V_{DD} = 5.5V$		7	9	
Shutdown Supply Current	I _{DD(SHDN_)}	SHDN_ = GND, MAX	9911/MAX9913		0.001	0.5	μΑ
Input Offset Voltage	Vos				±0.2	±1	mV
Input-Offset-Voltage Matching		MAX9912/MAX9913			±250		μV
Input Bias Current	IB	(Note 2)			±1	±10	рА
Input Offset Current	los	(Note 2)			±1	±10	рА
Input Posistanes	Divi	Common mode	Common mode		1		GΩ
Input Resistance	R _{IN}	Differential mode, -1mV < V _{IN} < +1mV			10		GLZ
Input Common-Mode Range	V _{CM}	Guaranteed by CMRF	V _{SS} - 0.1		V _{DD} + 0.1	V	
Common-Mode Rejection Ratio	CMRR	$-0.1V < V_{CM} < V_{DD} + 0.1V, V_{DD} = 5.5V$			80		dB
Power-Supply Rejection Ratio	PSRR	1.8V < V _{DD} < 5.5V		65	95		dB
Open-Loop Gain	Avol R _L	25mV < V _{OUT} < V _{DD} - 25 mV, R _L = 100 k Ω , V _{DD} = 5.5 V		95	120		dB
		AVUL	100 mV $<$ V _{OUT} $<$ V _{DE} $R_L = 5$ k Ω , V _{DD} $= 5.5$ V		95	110	
			$R_L = 100k\Omega$		2.5	5	
Output-Voltage-Swing High	Vон	V _{DD} - V _{OUT}	$R_L = 5k\Omega$		50	70	mV
			$R_L = 1k\Omega$		250		
			$R_L = 100k\Omega$		2.5	5	
Output-Voltage-Swing Low	V _{OL}	Vout - Vss	$R_L = 5k\Omega$		50	70	mV
			$R_L = 1k\Omega$		250		
Channel-to-Channel Isolation	CHISO	Specified at DC, MAX	(9912/MAX9913		100		dB
Output Short-Circuit Current	lout(sc)				±15		mA

2 ______ /N/XI/VI

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD} / 2, R_L = \infty \text{ connected to } V_{DD} / 2, \overline{SHDN}_ = V_{DD}, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
CHDM Legis Leur	$V_{DD} = 1.8V \text{ to } 3.6V, MAX9911/MAX99}$.6V, MAX9911/MAX9913			0.4	V
SHDN_ Logic Low	VIL	V _{DD} = 3.6V to 5.5V, MAX9911/MAX9913				8.0	V
CUDN Legis High	\/	V _{DD} = 1.8V to 3.6V, MAX9911/MAX9913		1.4			V
SHDN_ Logic High	VIH	$V_{DD} = 3.6V \text{ to } 5$.5V, MAX9911/MAX9913	2			
CUDN Input Ding Current	I₁∟	SHDN_ = V _{SS} , I	MAX9911/MAX9913 (Note 2)			1	Λ
SHDN_ Input Bias Current	lін	$\overline{SHDN}_{-} = V_{DD}$,	MAX9911/MAX9913			500	nA
Output Leakage in Shutdown	IOUT(SHDN_)	SHDN_ = V _{SS} , V MAX9911/MAX9	$V_{OUT} = 0V \text{ to } V_{DD},$ 9913		1	500	nA
Gain-Bandwidth Product					200		kHz
Slew Rate					0.1		V/µs
			$A_V = 1V/V$		30		
Capacitive-Load Stability (See the <i>Driving Capacitive Loads</i>		No sustained oscillations	$A_V = 10V/V$		250	pF	ne l
Section)			$R_L = 5k\Omega$, $A_V = 1V/V$		200		рг
			$R_{ISO} = 1k\Omega$, $A_V = 1V/V$		100		
Input Voltage-Noise Density		f = 1kHz			400		nV/√Hz
Input Current-Noise Density		f = 1kHz			0.001		pA/√Hz
Settling Time		To 0.1%, V _{OUT}	= 2V step, A _V = -1V/V		18		μs
Delay Time to Shutdown	tsH	I _{DD} = 5% of normal operation, V _{DD} = 5.5V, V _{SHDN} _ = 5.5V to 0 step			2		μs
Delay Time to Enable	t _{EN}	$V_{OUT} = 2.7V$, V_{OUT} settles to 0.1%, $V_{DD} = 5.5V$, $V_{\overline{SHDN}} = 0$ to 5.5V step			30	_	μs
Power-Up Time		$V_{DD} = 0 \text{ to } 5.5V$	step		5		μs

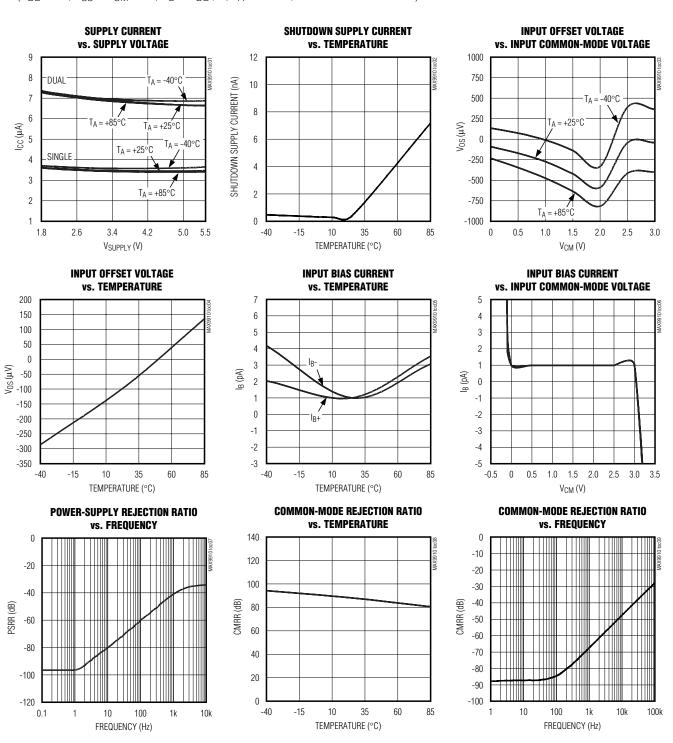
ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD} / 2, R_L = \infty \text{ connected to } V_{DD} / 2, \overline{SHDN}_ = V_{DD}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRR test		1.8		5.5	V
Company Command	1	MAX9910/MAX9911	V _{DD} = 5.5V			5.5	μΑ
Supply Current	IDD	MAX9912/MAX9913				11	
Shutdown Supply Current	I _{DD} (SHDN_)	<u>SHDN</u> _ = GND, MAX9911/MAX9913				1	μΑ
Input Offset Voltage	Vos					±5	mV
Input-Offset-Voltage Temperature Coefficient	TC _{VOS}				±5		μV/°C

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD} / 2, R_L = \infty \text{ connected to } V_{DD} / 2, \overline{SHDN}_ = V_{DD}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

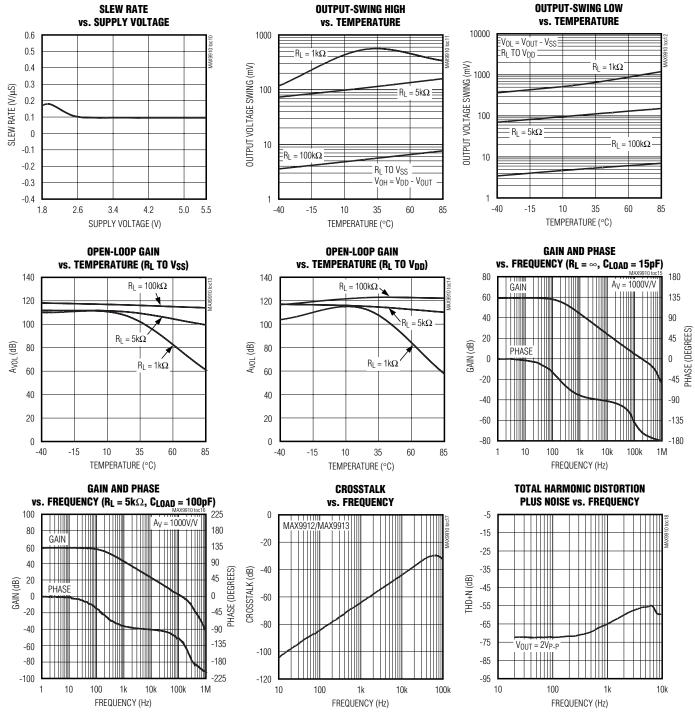

PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	UNITS	
Input Bias Current	ΙΒ					±30	рΑ	
Input Offset Current	los					±20	рΑ	
Input Common-Mode Range	V _{СМ}	Guaranteed by CMRR test		V _{SS} - 0.05		V _{DD} + 0.05	V	
Common-Mode Rejection Ratio	CMRR	-0.05V < V _{CM} < V _{DD}	$+ 0.05V, V_{DD} = 5.5V$	60			dB	
Power-Supply Rejection Ratio	PSRR	$1.8V < V_{DD} < 5.5V$		59			dB	
Occasion Ocia	Δ .		$25\text{mV} < V_{\text{OUT}} < V_{\text{DD}} - 25\text{mV},$ $R_{\text{L}} = 100\text{k}\Omega, V_{\text{DD}} = 5.5\text{V}$					
Open-Loop Gain	Avol	$150\text{mV} < \text{V}_{\text{OUT}} < \text{V}_{\text{DD}} - 150\text{mV},$ $R_{\text{L}} = 5\text{k}\Omega, \text{V}_{\text{DD}} = 5.5\text{V}$		80			dB	
	VoH	VDD - VOLIT	$R_L = 100k\Omega$			5	m\/	
Output-Voltage-Swing High			$R_L = 5k\Omega$			90	mV	
Output Voltage Swing Low	Voi	$V_{OUT} - V_{SS}$ $R_L = 100k\Omega$				5	mV	
Output-Voltage-Swing Low	V _{OL}	R _L =	$R_L = 5k\Omega$			90	IIIV	
SHDN_ Logic Low	V	$V_{DD} = 1.8V \text{ to } 3.6V$				0.4	V	
SHDIN_ LOGIC LOW	V _{IL}	$V_{DD} = 3.6V \text{ to } 5.5V$				0.8	V	
SHDN_ Logic High	VIH	$V_{DD} = 1.8V \text{ to } 3.6V, MAX9911/MAX9913}$		1.4			V	
SHDN_ Logic High	VIH	V _{DD} = 3.6V to 5.5V, MAX9911/MAX9913		2			V	
CLIDN Input Dies Current	I _{IL}	SHDN_ = V _{SS} , MAX9911/MAX9913				5	nA	
SHDN_ Input-Bias Current	liH	SHDN_ = V _{DD} , MAX	9911/MAX9913			1000	nA	
Output Leakage in Shutdown	IOUT(SHDN_)	SHDN_ = V _{SS} , V _{OUT} MAX9911/MAX9913	$= 0V \text{ to } V_{DD},$			1000	nA	

Note 1: Specifications are 100% tested at $T_A = +25$ °C (exceptions noted). All temperature limits are guaranteed by design.

Note 2: Guaranteed by design, not production tested.

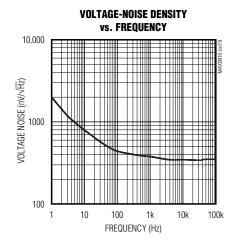
Typical Operating Characteristics

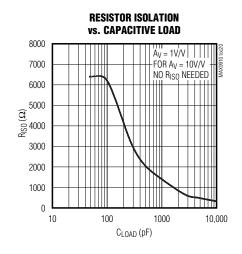
(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L to V_{DD} / 2, T_A = +25°C, unless otherwise noted.)

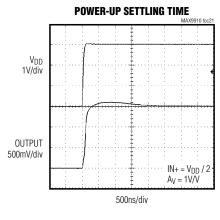

Downloaded from Arrow.com.

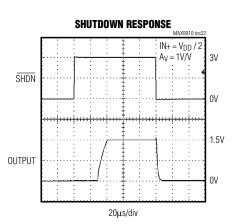
MIXIM

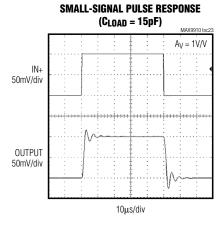
Typical Operating Characteristics (continued)

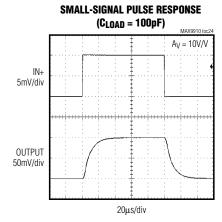

MIXIM

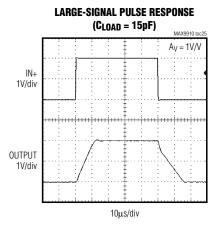

 $(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L \text{ to } V_{DD} / 2, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

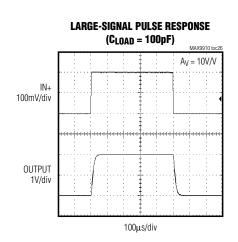


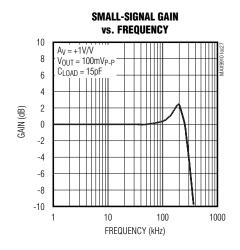

Typical Operating Characteristics (continued)

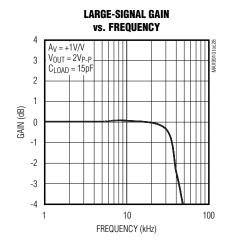

 $(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L \text{ to } V_{DD} / 2, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

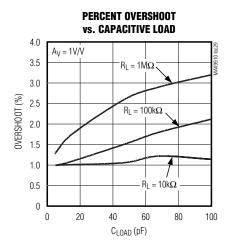


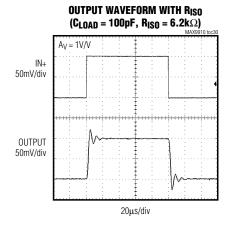


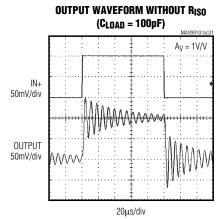







/W/1XI/W _____


_Typical Operating Characteristics (continued)


 $(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L \text{ to } V_{DD} / 2, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

8 ______*N\X*

Pin Description

		PIN				
MAX9911 (WLP)	MAX9910	MAX9911 (SC70)	MAX9912	MAX9913	NAME	FUNCTION
A1	1	1	_	_	IN+	Noninverting Amplifier Input
A2	2	2	4	4	V _{SS}	Negative Supply Voltage
B1	3	3	_	_	IN-	Inverting Amplifier Input
C1	4	4	_	_	OUT	Amplifier Output
B2	5	6	8	10	V_{DD}	Positive Supply Voltage
C2	_	5	_	_	SHDN	Shutdown
_	_	_	1	1	OUTA	Amplifier Output Channel A
_	_	_	2	2	INA-	Inverting Amplifier Input Channel A
	_	_	3	3	INA+	Noninverting Amplifier Input Channel A
	_	_	_	5	SHDNA	Shutdown Channel A
_	_	_	_	6	SHDNB	Shutdown Channel B
_	_	_	5	7	INB+	Noninverting Amplifier Input Channel B
_	_	_	6	8	INB-	Inverting Amplifier Input Channel B
_	_	_	7	9	OUTB	Amplifier Output Channel B

Detailed Description

Featuring a maximized ratio of GBW to supply current, low operating supply voltage, low input bias current, and rail-to-rail inputs and outputs, the MAX9910–MAX9913 are an excellent choice for precision or general-purpose, low-current, low-voltage, battery-powered applications. These CMOS devices consume an ultralow 4µA (typ) supply current and a 200µV (typ) offset voltage. For additional power conservation, the MAX9911/MAX9913 feature a low-power shutdown mode that reduces supply current to 1nA (typ), and puts the amplifiers' output in a high-impedance state. These devices are unity-gain stable with a 200kHz GBW product, driving capacitive loads up to 30pF. The capacitive load can be increased to 250pF when the amplifier is configured for a 10V/V gain.

Rail-to-Rail Inputs and Outputs

All of the MAX9910–MAX9913 amplifiers have a parallel-connected n- and p-channel differential input stage that allows an input common-mode voltage range that extends 100mV beyond the positive and negative supply rails, with excellent common-mode rejection.

The MAX9910-MAX9913 are capable of driving the output to within 5mV of both supply rails with a 100k Ω

load. These devices can drive a $5k\Omega$ load with swings to within 60mV of the rails. Figure 1 shows the output voltage swing of the MAX9910–MAX9913 configured as a unity-gain buffer powered from a single 3V supply.

Low Input Bias Current

The MAX9910–MAX9913 feature ultra-low 1pA (typ) input bias current. The variation in the input bias current is minimal with changes in the input voltage due to very high input impedance (in the order of $1G\Omega$).

_Applications Information

Driving Capacitive Loads

The MAX9910–MAX9913 amplifiers are unity-gain stable for loads up to 30pF. However, the capacitive load can be increased to 250pF when the amplifier is configured for a minimum gain of 10V/V. Applications that require greater capacitive-drive capability should use an isolation resistor between the output and the capacitive load (Figure 2). Also, in unity-gain applications with relatively small R_L (approximately $5k\Omega$), the capacitive load can be increased up to 200pF.

Power-Supply Considerations

The MAX9910–MAX9913 are optimized for single 1.8V to 5.5V supply operation. A high amplifier power-supply

rejection ratio of 95dB (typ) allows the devices to be powered directly from a battery, simplifying design and extending battery life.

Power-Up Settling Time

The MAX9910–MAX9913 typically require 5µs after power-up. Supply settling time depends on the supply voltage, the value of the bypass capacitor, the output impedance of the incoming supply, and any lead resistance or inductance between components. Op-amp settling time depends primarily on the output voltage and is slew-rate limited. Figure 3 shows the MAX991_ in a noninverting voltage follower configuration with the input held at midsupply. The output settles in approximately 18µs for VDD = 3V (see the *Typical Operating Characteristics* for power-up settling time).

Shutdown Mode

The MAX9911/MAX9913 feature active-low shutdown inputs. The MAX9911/MAX9913 enter shutdown in 2µs (typ) and exit in 30µs (typ). The amplifiers' outputs are in a high-impedance state in shutdown mode. Drive SHDN low to enter shutdown. Drive SHDN high to enable the amplifier. The MAX9913 dual-amplifier features separate shutdown inputs. Shut down both amplifiers for the lowest quiescent current.

Power-Supply Bypassing and Layout

To minimize noise, bypass V_{DD} with a $0.1\mu F$ capacitor to ground, as close to the pin as possible.

Good layout techniques optimize performance by decreasing the amount of stray capacitance and inductance to the op amps' inputs and outputs. Minimize stray capacitance and inductance by placing external components close to the IC.

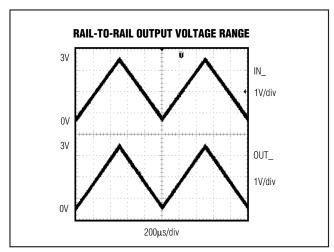


Figure 1. Rail-to-Rail Output Voltage Range

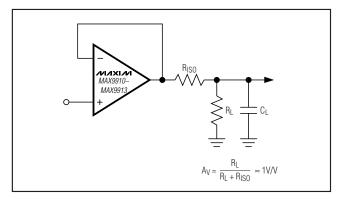


Figure 2. Using a Resistor to Isolate a Capacitive Load from the Op Amp

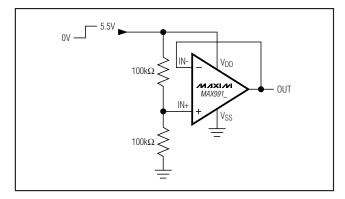
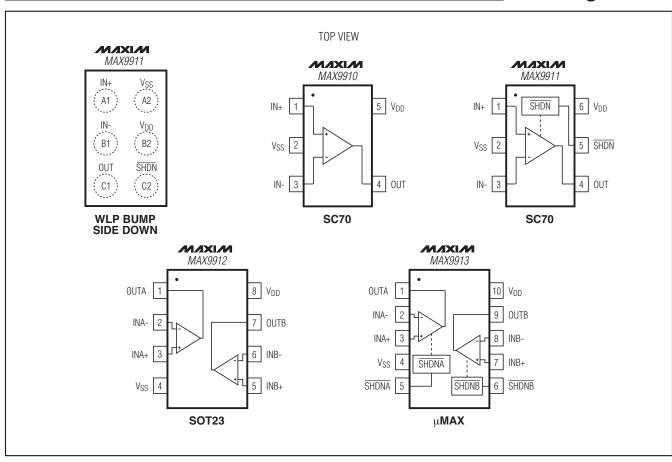
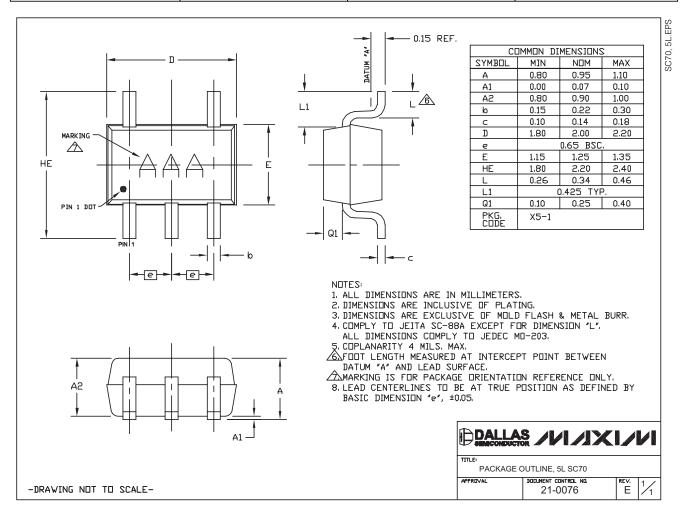



Figure 3. Power-Up Test Configuration

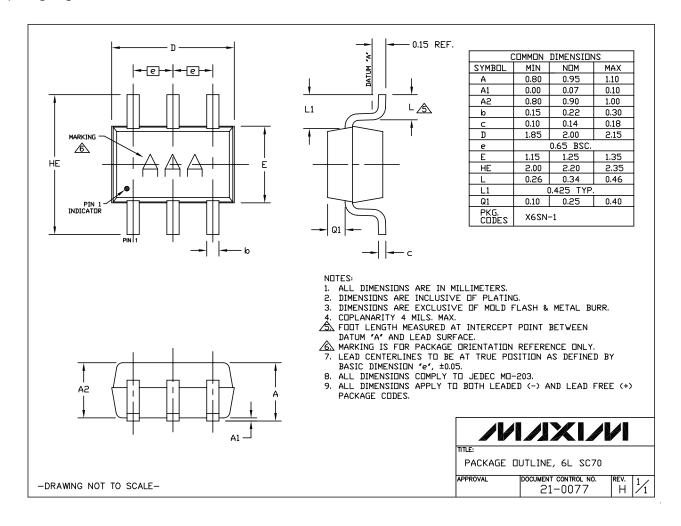
10 /V/XI/VI

Pin Configurations

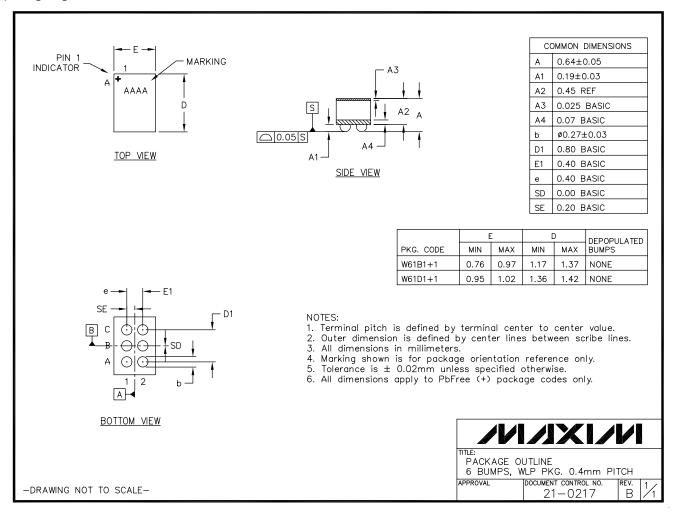

_____Chip Information

PROCESS: BiCMOS

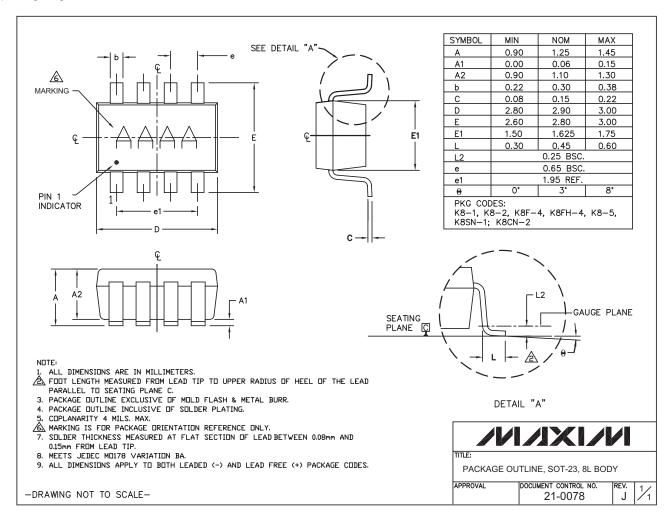
Package Information


For the latest package outline information and land patterns, go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

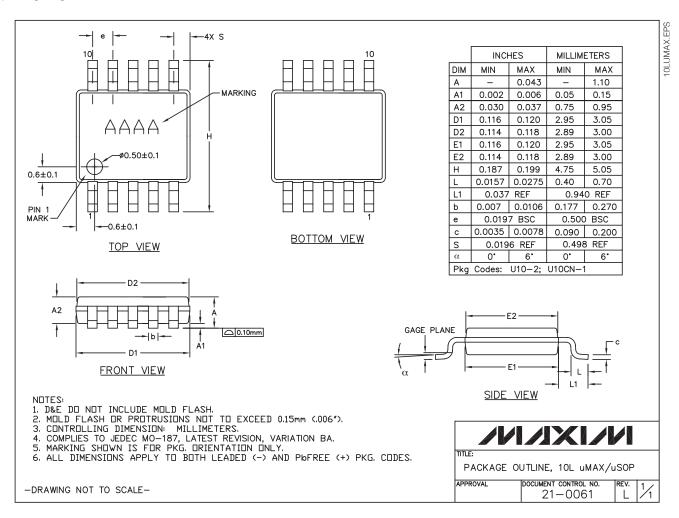
PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC70	X5+1	<u>21-0076</u>	<u>90-0188</u>
6 SC70	X6SN+1	<u>21-0077</u>	<u>90-0189</u>
6 WLP	W61B1+1	<u>21-0217</u>	_
8 SOT23	K8+5	<u>21-0078</u>	<u>90-0176</u>
10 μMAX	U10+2	<u>21-0061</u>	<u>90-0330</u>


Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.


Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.


Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
2	10/10	Added WLP package	1, 2, 9, 11

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____