ABSOLUTE MAXIMUM RATINGS

IN+, IN-, SHDN, VCC to GND	0.3V to +6V
OUT to GND0.3	$3V \text{ to } (V_{CC} + 0.3V)$
Short-Circuit (GND) Duration to Either Supply	/ Rail5s
Continuous Input Current (any pin)	±20mA
Thermal Limits (Note 1) Multilayer PCB	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
6-Pin SC70 (derate 3.1mW/°C above +70°	C)245mW
θJA	326.5°C/W
θJC	115°C/W

8-Pin SC70 (derate 3.1mW/°C above +70	°C)245mW
θJA	326°C/W
θJC	115°C/W
Operating Temperature Range	40°C to +125°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	
Soldering Temperature (reflow)	+260°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

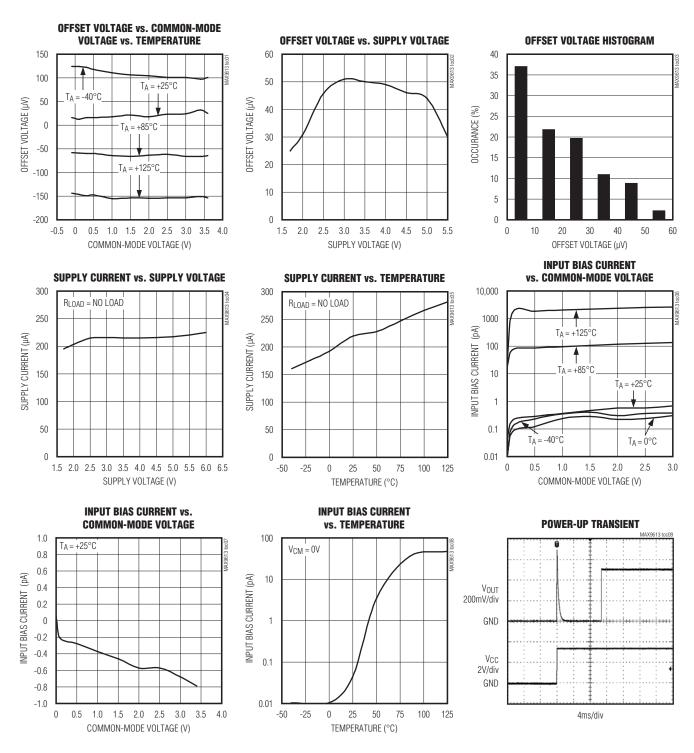
 $(V_{CC} = V_{\overline{SHDN}} = 3.3V, V_{IN+} = V_{IN-} = V_{CM} = 0V, R_L = 10k\Omega$ to $V_{CC}/2$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$. Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
DC CHARACTERISTICS							
Input Voltage Range	VIN+, VIN-	Guaranteed by CMRR test	-0.1		VCC + 0.1	V	
Input Offset Voltage	Vos	T _A = +25°C		23	100	μV	
		T _A = -40°C to +125°C after power-up autocalibration			150		
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			750		
Input Offset Voltage Drift	Vos - TC			1	7	μV/°C	
		$T_A = +40$ °C to $+25$ °C		1	1.55	рА	
Input Rias Current (Note 3)	l _D	$T_A = +70$ °C			45		
Input Bias Current (Note 3)	IB	$T_A = +85$ °C			135		
		$T_A = +125^{\circ}C$			1.55	nA	
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1V$ to $V_{CC} + 0.1V$, $T_A = +25^{\circ}C$	82	100		dB	
		$V_{CM} = -0.1V$ to $V_{CC} + 0.1V$, $T_{A} = -40^{\circ}C$ to $+125^{\circ}C$	80				
	los	$T_A = +40$ °C to $+25$ °C		-	0.5	pA	
Input Offset Current (Note 3)		TA = +70°C			7		
input Onset Current (Note 3)		$T_A = +85^{\circ}C$			25		
		$T_A = +125^{\circ}C$			400		
Open-Loop Gain	Aol	$+0.4V \le V_{OUT} \le V_{CC} - 0.4V$, $R_L = 10k\Omega$	99	120		dB	
Output Short-Circuit Current	loo	To Vcc		275		mA	
(Note 4)	Isc	To GND		75] IIIA	
	VoL	$R_L = 10k\Omega$			0.011	V	
Output Voltage Low		$R_L = 600\Omega$			0.1		
		$R_L = 32\Omega$		0.170			

ELECTRICAL CHARACTERISTICS (continued)

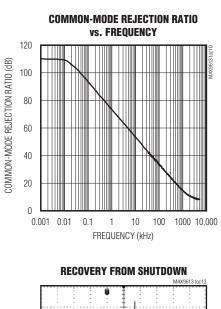
 $(VCC = V\overline{SHDN} = 3.3V, VIN_{+} = VIN_{-} = VCM = 0V, RL = 10k\Omega$ to VCC/2, $TA = -40^{\circ}C$ to $+125^{\circ}C$. Typical values are at $TA = +25^{\circ}C$, unless otherwise noted.) (Note 2)

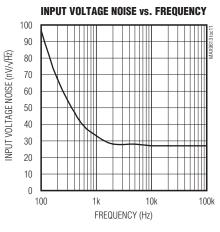
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Output Voltage High	Vон	$R_L = 10k\Omega$	V _C C - 0.011				
		$R_L = 600\Omega$	V _C C - 0.1			V	
		$R_L = 32\Omega$		V _C C - 0.560			
AC CHARACTERISTICS							
Input Voltage Noise Density	en	f = 10kHz		28		nV/√Hz	
Input Voltage Noise	Total noise	$0.1Hz \le f \le 10Hz$		5		μV _{P-P}	
Input Current Noise Density	In	f = 10kHz		0.1		fA/√Hz	
Gain Bandwidth	GBW			2.8		MHz	
Slew Rate	SR			1.3		V/µs	
Capacitive Loading	CLOAD	No sustained oscillation		200		рF	
Total Harmonic Distortion	THD	$f = 10kHz$, $V_{OUT} = 2V_{P-P}$, $A_V = 1V/V$		85		dB	
POWER-SUPPLY CHARACTERIS	STICS						
Power-Supply Range	Vcc	Guaranteed by PSRR	1.8		5.5	V	
Fower-Supply harige	VCC	T _A = 0°C to +70°C, guaranteed by PSSR	1.7		5.5		
Power-Supply Rejection Ratio	PSRR	$TA = +25^{\circ}C$	85	106		dB	
Power-Supply nejection hatto		$T_A = -40$ °C to $+125$ °C	83				
Quiescent Current	Icc	Per amplifier, T _A = +25°C		220	305	μА	
Quiescent Current		Per amplifier			420		
Shutdown Supply Current	ISHDN	MAX9613 only			1	μΑ	
Shutdown Input Low	VIL	MAX9613 only			0.5	V	
Shutdown Input High	VIH	MAX9613 only	1.4			V	
Output Impedance in Shutdown	ROUT_SHON	MAX9613 only		10		MΩ	
Turn-On Time from SHDN	ton	MAX9613 only		20		μs	
Power-Up Time	tup			10		ms	

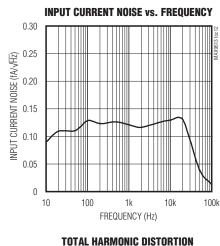

Note 2: All devices are 100% production tested at $T_A = +25^{\circ}C$. Temperature limits are guaranteed by design.

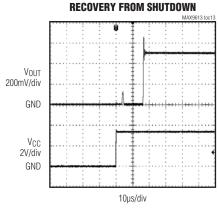
Note 3: Guaranteed by design, not production tested.

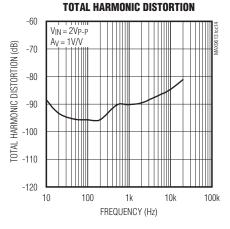
Note 4: Do not exceed package thermal dissipation in the Absolute Maximum Ratings section.

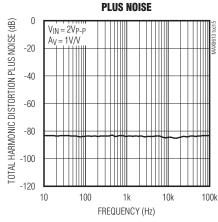

Typical Operating Characteristics

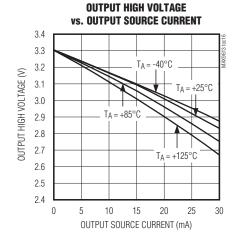

 $(V_{CC} = 3.3V, V_{IN+} = V_{IN-} = 0V, V_{CM} = V_{CC}/2, R_L = 10k\Omega$ to $V_{CC}/2$, values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

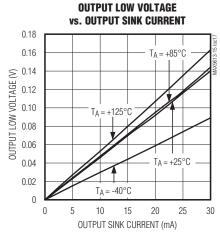


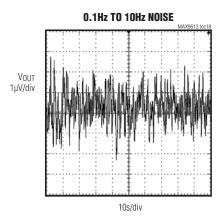

Typical Operating Characteristics (continued)

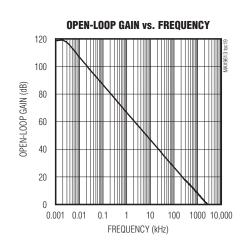

 $(V_{CC} = 3.3V, V_{IN+} = V_{IN-} = 0V, V_{CM} = V_{CC}/2, R_L = 10k\Omega$ to $V_{CC}/2$, values are at $T_A = +25^{\circ}C$, unless otherwise noted.)

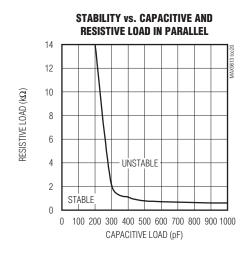


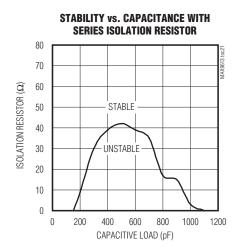


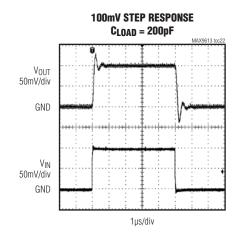


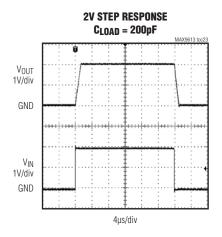


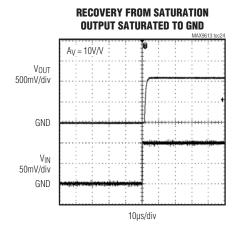


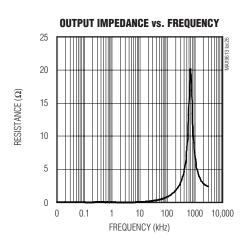



MIXIM

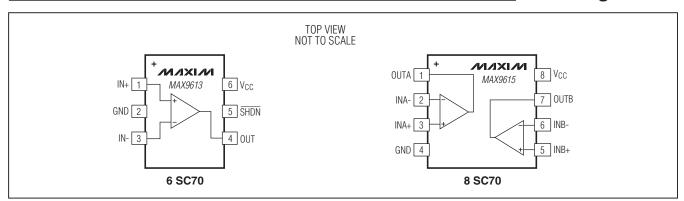

Typical Operating Characteristics (continued)


 $(V_{CC} = 3.3V, V_{IN+} = V_{IN-} = 0V, V_{CM} = V_{CC}/2, R_L = 10k\Omega$ to $V_{CC}/2$, values are at $T_A = +25^{\circ}C$, unless otherwise noted.)





Typical Operating Characteristics (continued)


 $(V_{CC} = 3.3V, V_{IN+} = V_{IN-} = 0V, V_{CM} = V_{CC}/2, R_L = 10k\Omega$ to $V_{CC}/2$, values are at $T_A = +25$ °C, unless otherwise noted.)

RECOVERY FROM SATURATION OUTPUT SATURATED TO VCC MAXX9613 to:25 VOUT 1V/div GND Vin 1V/div GND

10µs/div

Pin Configuration

Pin Description

PIN		NAME	FUNCTION	
MAX9613	MAX9615	NAME	FUNCTION	
1	_	IN+	Positive Input	
_	3	INA+	Positive Input A	
_	5	INB+	Positive Input B	
2	4	GND	Ground	
3	_	IN-	Negative Input	
_	2	INA-	Negative Input A	
_	6	INB-	Negative Input B	
4	_	OUT	Output	
_	1	OUTA	Output A	
_	7	OUTB	Output B	
5	_	SHDN	Active-Low Shutdown	
6	8	Vcc	Positive Power Supply. Bypass with a 0.1µF capacitor to ground.	

MIXIM

Detailed Description

The MAX9613/MAX9615 are low-power op amps ideal for signal processing applications due to their high precision and CMOS inputs.

The MAX9613 also features a low-power shutdown mode that greatly reduces quiescent current while the device is not operational.

The MAX9613/MAX9615 self-calibrate on power-up to eliminate effects of temperature and power-supply variation.

Crossover Distortion

These op amps feature an integrated charge pump that creates an internal voltage rail 1V above V_{CC} that is used to power the input differential pair of pMOS transistors. This unique architecture eliminates crossover distortion common in traditional complementary pair type of input architecture.

In these op amps, an inherent input offset voltage difference between the nMOS pair and pMOS pair of transistors causes signal degradation as shown in Figure 1. By using a single pMOS pair of transistors, this source of input distortion is eliminated, making these parts extremely useful in noninverting configurations such as Sallen-Key filters.

The charge pump requires no external components and is entirely transparent to the user. See Figure 2.

RF Immunity

The MAX9613/MAX9615 feature robust internal EMI filters that reduce the devices' susceptibility to high-frequency RF signals such as from wireless and mobile devices. This, combined with excellent DC and AC specifications, makes these devices ideal for a wide variety of portable audio and sensitive signal-conditioning applications.

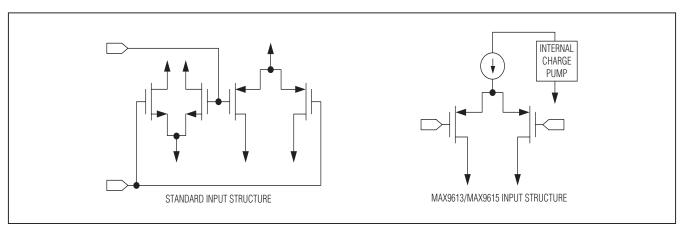


Figure 1. Rail-to-Rail Input Stage Architectures

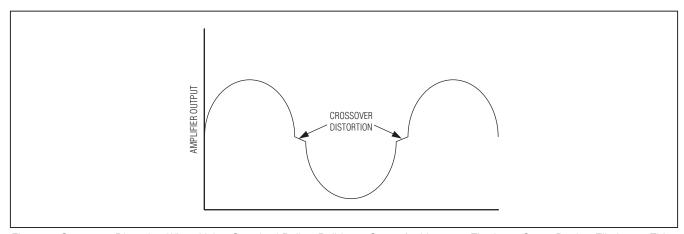


Figure 2. Crossover Distortion When Using Standard Rail-to-Rail Input Stage Architecture. The Input Stage Design Eliminates This Drawback.

Applications Information

Power-Up Autotrim

The MAX9613/MAX9615 feature an automatic autotrim that self-calibrates the VOS of these devices to less than $100\mu V$ of input offset voltage (Figure 3). The autotrim sequence takes approximately 3ms to complete, and is triggered by an internal power-on reset (POR) threshold of 0.5V. During this time, the inputs and outputs are put into high impedance and left unconnected. This self-calibration feature allows the device to eliminate input offset voltage effects due to power supply and operating temperature variation simply by cycling its power.

If the power supply glitches below the 0.5V threshold, the POR circuitry reactivates during next power-up.

Shutdown Operation

The MAX9613 features an active-low shutdown mode that puts both inputs and outputs into a high-impedance state. In this mode, the quiescent current is less than $1\mu A.$ Putting the output in high impedance allows multiple signal outputs to be multiplexed onto a single output line without the additional external buffers. The device does not self-calibrate when exiting shutdown mode, and retains its power-up trim settings. The device also instantly recovers from shutdown.

The shutdown logic levels of the device are independent of supply, allowing the shutdown to be operated by either a 1.8V or 3.3V microcontroller.

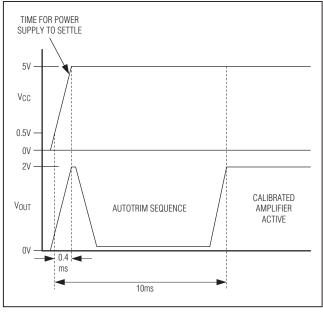


Figure 3. Autotrim Timing Diagram

Rail-to-Rail Input/Output

The input voltage range of the MAX9613/MAX9615 extends 100mV above VCC and below ground. The wide input common-mode voltage range allows the op amp to be used as a buffer and as a differential amplifier in a wide variety of signal processing applications. Output voltage low is designed to be especially close to ground—it is only 11mV above ground, allowing maximum dynamic range in single-supply applications. High output current and capacitance drive capability of the part help it to be useful in ADC driver and line driver applications.

Interfacing with the MAX11613

The MAX9615 dual amplifier's low power and tiny size is ideal for driving multichannel analog-to-digital converters (ADCs) such as the MAX11613. See the *Typical Application Circuit*. The MAX11613 is a low-power, 12-bit I²C ADC that measures either four single-ended or two differential channels in an 8-pin µMAX® package. Operating from a single 3V or 3.3V supply, the MAX11613 draws a low 380µA supply current when sampling at 10ksps. The MAX11613 family also offers pincompatible 5V ADCs (MAX11612) and 8-bit (MAX11601) and 10-bit (MAX11607) options.

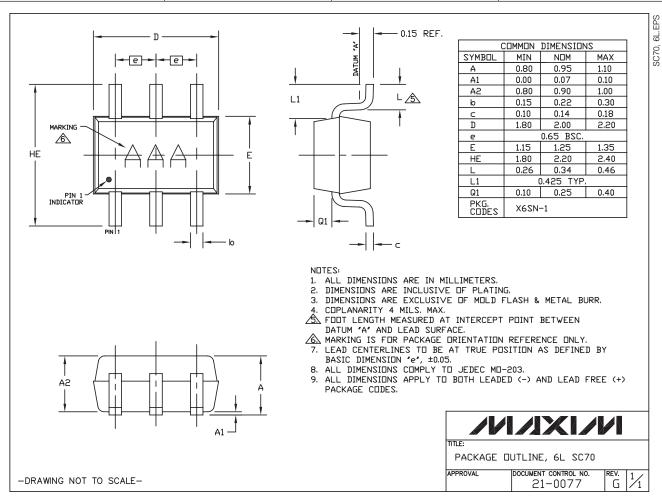
Input Bias Current

The MAX9613/MAX9615 feature a high-impedance CMOS input stage and a specialized ESD structure that allows low input bias current operation at low input common-mode voltages. Low input bias current is useful when interfacing with high-ohmic sensors. It is also beneficial for designing transimpedance amplifiers for photodiode sensors. This makes these MAX9613/MAX9615 devices ideal for ground referenced medical and industrial sensor applications.

Active Filters

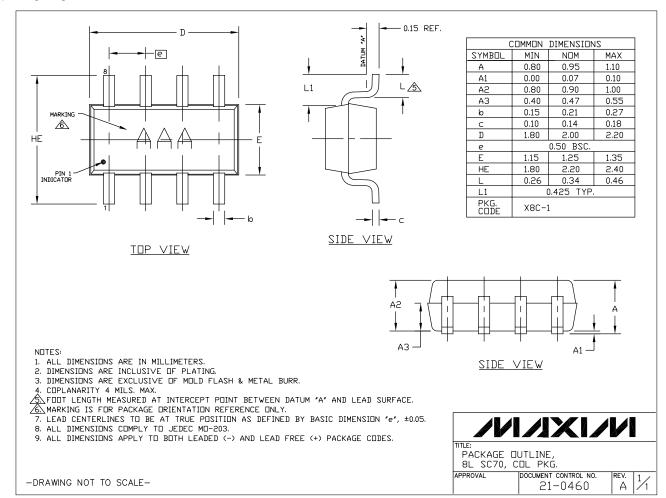
The MAX9613/MAX9615 are ideal for a wide variety of active filter circuits that make use of their rail-to-rail input/output stages and high-impedance CMOS inputs. The *Typical Application Circuit* shows an example Sallen-Key active filter circuit with a corner frequency of 10kHz. At low frequencies, the amplifier behaves like a simple low-distortion noninverting buffer, while its high bandwidth gives excellent stopband attenuation above its corner frequency. See the *Typical Application Circuit*.

Chip Information


PROCESS: BICMOS

µMAX is a registerred trademark of Maxim Integrated Products, Inc.

Package Information


For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SC70	X6SN-1	<u>21-0077</u>	<u>90-0189</u>
8 SC70	X8SN-1	21-0460	90-0348

Package Information (continued)

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/10	Initial release	_

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 ______ Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600