

Conclusion

The MAX667CSA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description IV.Die Information

II.Manufacturing Information

- III.Packaging Information
-Attachments

V.Quality Assurance Information VI.Reliability Evaluation

I. Device Description

A. General

The MAX667 low-dropout, positive, linear voltage regulator supplies up to 250mA of output current. With no load, it has a typical quiescent current of 20µA. At 200mA of output current, the input/output voltage differential is typically 150mV. Other features include a low-voltage detector to indicate power failure, as well as early-warning and low-dropout detectors to indicate an imminent loss of output voltage regulation. A shutdown control disables the output and puts the circuit into a low quiescent-current mode. The MAX667 employs Dual Mode™ operation. One mode uses internally trimmed feedback resistors to produce +5V. In the other mode, the output may be varied from +1.3V to +16V by connecting two external resistors. The MAX667 is a pin-compatible upgrade to the MAX666 in most applications where the input voltages are above +3.5V. Choose the MAX667 when high output currents and/or low dropout voltages are desired, as well as for improved performance at higher temperatures.

II. Manufacturing Information

 A. Description/Function:
 +5V Programmable, Low-Dropout Voltage Regulator

 B. Process:
 M6

Oregon

Pre 1997

Malaysia, Philippines, Thailand

- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	8-pin SOIC (N)
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (1.3 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-0701-0393
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	170°C/W
K. Single Layer Theta Jc:	40°C/W
L. Multi Layer Theta Ja:	132°C/W
M. Multi Layer Theta Jc:	38°C/W

IV. Die Information

A. B. C. D. E. F. G. H.

Dimensions:	70 X 111 mils
Passivation:	Si ₃ N ₄ /SiO ₂ (Silicon nitride/ Silicon dioxide)
. Interconnect:	Al/1.0%Si
Backside Metallization:	None
Minimum Metal Width:	Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
Minimum Metal Spacing:	Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)
. Bondpad Dimensions:	5 mil. Sq.
Isolation Dielectric:	SiO ₂
Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Richard Aburano (Manager, Reliability Engineering)
	Don Lipps (Manager, Reliability Engineering)
	Bryan Preeshl (Vice President of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.
	0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \text{ x } 4340 \text{ x } 80 \text{ x } 2} \text{ (Chi square value for MTTF upper limit)}$ $\lambda = 13.7 \text{ x } 10^{-9}$ $\lambda = 13.7 \text{ x } 10^{-9}$ $\lambda = 13.7 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the M6 Process results in a FIT Rate of 0.22 @ 25C and 3.73 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot NEVAQO001B D/C 9809)

The PS22 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1 Reliability Evaluation Test Results

MAX667CSA+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test ((Note 1)				
	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	80	0	XEVANA040A, D/C 9547

Note 1: Life Test Data may represent plastic DIP qualification lots.