Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

Absolute Maximum Ratings

V _{CC} , RS+, RS- to GND	0.3V to +30V
OUT to GND	0.3V to (V _{CC} + 0.3V)
Differential Input Voltage (V _{RS+} - V _{RS-}).	±8V
Output Short Circuit to V _{CC}	Continuous
Output Short Circuit to GND	1s
Current into Any Pin	±20mA
Continuous Power Dissipation (T _A = +70	°C)
5-Pin SOT23 (derate 3.10mW/°C abov	re +70°C)246.70mW
8-Pin µMAX (derate 4.5mW/°C above	+70°C)362mW

8-Pin SO (derate 5.88mW/°C above +70°C)471mW
14-Pin SO (derate 8.33mW/°C above +70°C)667mW
14-Pin TSSOP (derate 9.1mW/°C above +70°C)727mW
Operating Temperature Range40°C to +125°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C
Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

5 SOT23

PACKAGE CODE	U5+2, U5+2A
Outline Number	<u>21-0057</u>
Land Pattern Number	<u>90-0174</u>
Thermal Resistance, Multi-Layer Board:	
Junction to Ambient (θ _{JA})	255.90°C/W
Junction to Case (θ _{JC})	81°C/W

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

Electrical Characteristics

(V_{RS+} = 0 to 28V, V_{SENSE} = (V_{RS+} - V_{RS-}) = 0V, V_{CC} = +3.0V to +28V, R_L = ∞ , T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS	
Operating Voltage Range	V _{CC}	Guaranteed b	3		28	V	
Common-Mode Input Range	V _{CM}	Guaranteed b	0		28	V	
Common-Mode Rejection	CMR	$2V \le V_{RS+} \le 2$	28V, V _{SENSE} = 100mV		90		dB
Supply Current per Amplifier	ICC	V _{SENSE} = 5m	NV, V _{RS+} > 2.0V, V _{CC} = 12V		1	2.2	mA
Leakage Current	I _{RS+} , I _{RS-}	$V_{CC} = 0V, V_{F}$	_{2S+} = 28V			8	μΑ
	1	V _{RS+} > 2.0V		0		60	
Input Pige Current	I _{RS+}	$V_{RS+} \le 2.0V$		-400		+60	
Input Bias Current	1	V _{RS+} > 2.0V		0		120	μA
	I _{RS-}	V _{RS+} ≤ 2.0V		-800		+120	
Full-Scale Sense Voltage	VSENSE				150		mV
			V _{SENSE} = 100mV, V _{CC} = 12V, V _{RS+} = 12V			±6.75	-
	lote 2) I _{OUT} ≤ 2mA		V _{SENSE} = 100mV, V _{CC} = 12V, TA = +25°C, V _{RS+} = 12V		±0.5	±3.25	
			V _{SENSE} = 100mV, V _{CC} = 28V, V _{RS+} = 28V			±11	
Total OUT Voltage Error (Note 2)		I _{OUT} ≤ 2mA	V_{SENSE} = 100mV, V_{CC} = 28V, V_{RS+} = 28V, TA = +25°C		±0.5	±5	%
			V _{SENSE} = 100mV, V _{CC} = 12V, V _{RS+} = 0.1V		±9	±32	
			V _{SENSE} = 6.25mV, V _{CC} = 12V, V _{RS+} = 12V (Note 3)		±7		
OUT High Voltage (Note 4)	(V _{CC} - V _{OUT})	V _{CC} = 3V, I _{OUT} = 2mA, V _{RS+} = 28V			0.9	1.2	V
OUT Low Voltage	V _{OL}	I _{OUT} = 200µA V _{SENSE} = 0V	A, V _{CC} = VRS+ = 12V, , T _A = +25°C		25	40	mV

Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

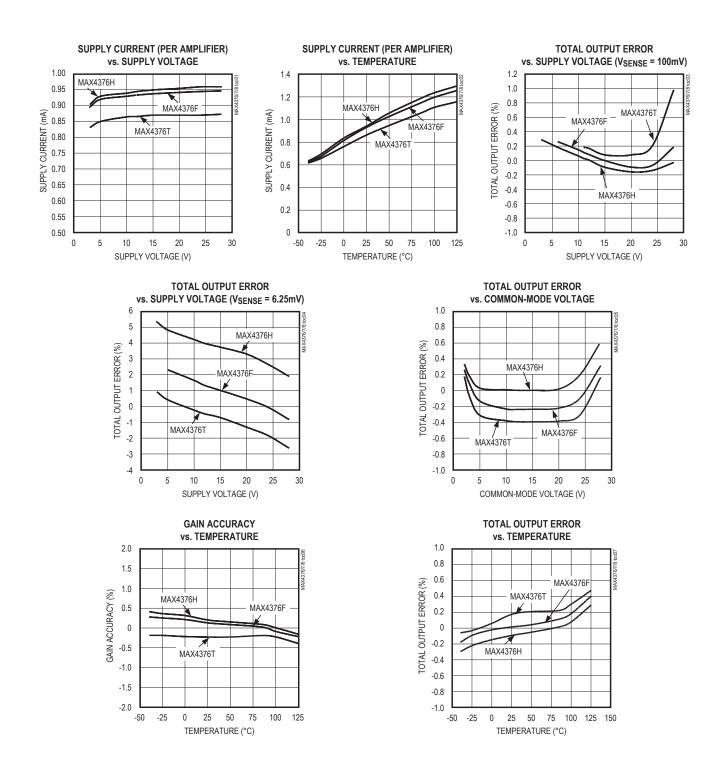
Electrical Characteristics (continued)

 $(V_{RS+} = 0 \text{ to } 28V, V_{SENSE} = (V_{RS+} - V_{RS-}) = 0V, V_{CC} = +3.0V \text{ to } +28V, R_L = \infty, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Bandwidth	BW		V _{SENSE} = 100mV (gain = +20V/V)			2		
		V _{CC} = 12V V _{RS+} = 12V	V _{SENSE} = 100mV (gain = +50V/V)			1.7		MHz
		V _{SENSE} = 15pF		_E = 100mV +100V/V)		1.2		
			VSENS	_E = 6.25mV (Note 3)		0.5		
Slew Rate	SR	V _{SENSE} = 20m\	/ to 100m	IV, C _{LOAD} = 15pF		10		V/µs
		MAX437_T				+20		
Gain	AV	MAX437_F				+50		V/V
		MAX437_H				+100		
	ΔΑν	$V_{SENSE} = 10mV \text{ to}$ 150mV, $V_{CC} = 12V$, $I_{OUT} = 2mA$, gain = 20 and 50, $V_{RS+} = 12V$		$T_A = T_{MIN}$ to T_{MAX}			±5.5	- %
Gain Accuracy				T _A = +25°C		±0.5	±2.5	
		V _{SENSE} = 10mV to 150mV, V _{CC} = 20V,		$T_A = T_{MIN}$ to T_{MAX}			5.5	
		I _{OUT} = 2mA, gai V _{RS+} = 12V	n = 100,	T _A = +25°C		±0.5	±2.5	
OUT Setting Time to 1% of		V _{CC} = 12V, V _{RS}	₊ = 12V,	V _{SENSE} = 6.25mV to 100mV		400		
Final Value		C _{LOAD} = 15pF				800		ns
Maximum Capacitive Load	CLOAD	No sustained os	cillation			1000		pF
Output Resistance	ROUT	V _{SENSE} = 100m	١V			5		Ω
Power-Supply Rejection	PSR	V _{RS+} > 2V, V _{OUT} = 1.6V, V _{CC} = 3V to 28V		66	90		dB	
Power-Up Time to 1% of Final Value		V _{SENSE} = 100mV, C _{LOAD} = 15pF			2		μs	
Saturation Recovery Time to 1% of Final Value		V_{CC} = 12V, V_{RS+} = 12V, C_{LOAD} = 15pF, V_{SENSE} = 100mV				1		μs
Reverse Recovery Time to 1% of Final Value		$V_{CC} = 12V, V_{RS} = 12V, C_{LOAD} = 15pF,$ $V_{SENSE} = -100mV \text{ to } +100mV$				1		μs

Note 1: All devices are 100% production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.

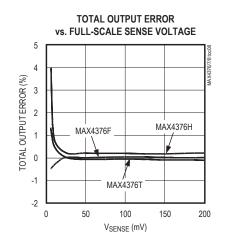
Note 2: Total OUT Voltage Error is the sum of gain and offset errors.

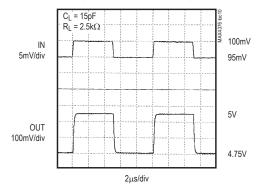

Note 3: 6.25mV = 1/16 of 100mV full-scale sense voltage.

Note 4: V_{SENSE} such that V_{OUT} is in saturation.

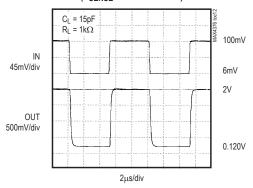
Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

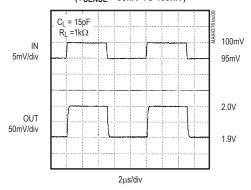
Typical Operating Characteristics

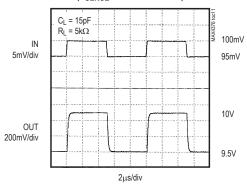

(V_{CC} = V_{RS+} = 12V, V_{SENSE} = 100mV, T_A = +25°C.)

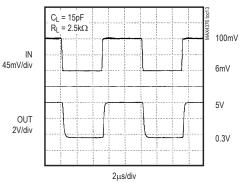

Downloaded from Arrow.com.

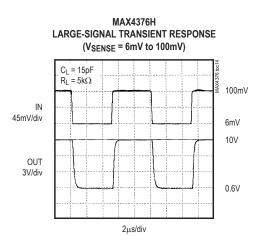
Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

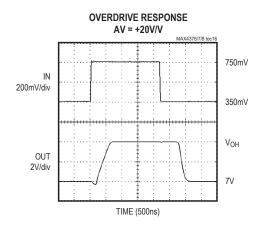

Typical Operating Characteristics (continued) (V_{CC} = V_{RS+} = 12V, V_{SENSE} = 100mV, T_A = +25°C.)

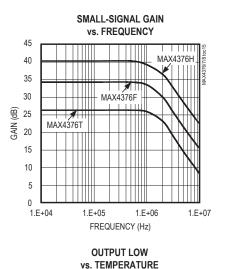


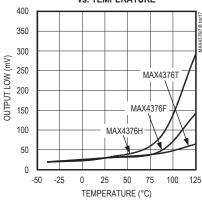

MAX4376T LARGE-SIGNAL TRANSIENT RESPONSE (VSENSE = 6mV to 100mV)


MAX4376T SMALL-SIGNAL TRANSIENT RESPONSE (VSENSE = 95mV TO 100mV)

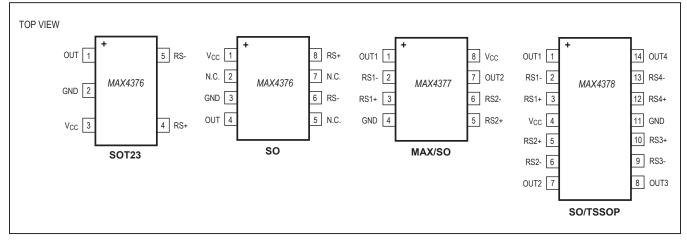



MAX4376F LARGE-SIGNAL TRANSIENT RESPONSE (VSENSE = 6mV to 100mV)




Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

Typical Operating Characteristics (continued) ($V_{CC} = V_{RS+} = 12V$, $V_{SENSE} = 100$ mV, $T_A = +25$ °C.)



Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

Pin Configurations

Pin Descriptions

	PIN					
MAX4376	MAX4376	MAX4377	MAX4378	NAME	FUNCTION	
SOT23-5	SO-8	MMAX-8/ SO-8	SO-14/ TSSOP-14			
1	4	1, 7	1, 7, 8, 14	OUT, OUT_	Output Voltage. VOUT_ is proportional to the magnitude of the sense voltage (VRS+ - VRS-). VOUT_ is approximately zero when VRS - > VRS - + (no phase reversal).	
2	3	4	11	GND	Ground	
3	1	8	4	VCC	Supply Voltage	
4	8	3, 5	3, 5, 10, 12	RS+, RS_+	Power connection to the external sense resistor	
5	6	2, 6	2, 6, 9, 13	RS-, RS	- Load-side connection to the external sense resistor	
_	2, 5, 7	—	_	N.C.	No Connection. Not internally connected.	

Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

Detailed Description

The MAX4376/MAX4377/MAX4378 high-side current-sense amplifiers feature a 0 to +28V input common-mode range that is independent of supply voltage. This feature allows the monitoring of current out of a battery in deep discharge and also enables high-side current sensing at voltages greater than the supply voltage (V_{CC}).

The MAX4376/MAX4377/MAX4378 operate as follows: current from the source flows through R_{SENSE} to the load (Figure 1). Since the internal sense amplifier's inverting input has high impedance, negligible current flows through RG2 (neglecting the input bias current). Therefore, the sense amplifier's inverting-input voltage equals V_{SOURCE} - (I_{LOAD})(RSENSE).

The amplifier's open-loop gain forces its noninverting input to the same voltage as the inverting input. Therefore, the drop across RG1 equals (I_{LOAD}) (R_{SENSE}). Since I_{RG1} flows through RG1, I_{RG1} = (I_{LOAD})(R_{SENSE})/RG1. The internal current mirror multiplies I_{RG1} by a current gain factor, β , to give I_{RGD} = $\beta \times$ I_{RG1}. Solving I_{RGD} = $\beta \times$ (I_{LOAD})(R_{SENSE})/RG1.

Therefore:

 V_{OUT} = b x (RGD/RG1)(R_{SENSE} x I_{LOAD}) x amp gain where amp gain is 2, 5, or 10.

The part's gain equals (β x RGD / RG1) x amp gain.

Therefore:

 $V_{OUT} = (GAIN)(R_{SENSE})(I_{LOAD})$

where GAIN = 20 for MAX437_T.

GAIN = 50 for MAX437_F.

GAIN = 100 for MAX437_H.

Set the full-scale output range by selecting $\mathsf{R}_{\mathsf{SENSE}}$ and the appropriate gain version of the MAX4376/ MAX4377/ MAX4378.

Applications Information

Recommended Component Values

The MAX4376/MAX4377/MAX4378 sense a wide variety of currents with different sense resistor values. Table 1 lists common resistor values for typical operation of the MAX4376/MAX4377/MAX4378.

Choosing RSENSE

To measure lower currents more accurately, use a high value for R_{SENSE} . The high value develops a higher sense voltage that reduces offset voltage errors of the internal op amp.

In applications monitoring very high currents, R_{SENSE} must be able to dissipate the I²R losses. If the resistor's rated power dissipation is exceeded, its value may drift or it may fail altogether, causing a differential voltage across the terminals in excess of the absolute maximum ratings.

If I_{SENSE} has a large high-frequency component, minimize the inductance of R_{SENSE} . Wire-wound resistors have the highest inductance, metal-film resistors are somewhat better, and low-inductance metal-film resistors are best suited for these applications.

Bidirectional Current-Sense Amplifier

Systems such as laptop computers and other devices that have internal charge circuitry require a precise bidirectional current-sense amplifier to monitor accurately the battery's current regardless of polarity. Figure 2 shows the MAX4377 used as a bidirectional current monitor. This is useful for implementing either smart battery packs or fuel gauges.

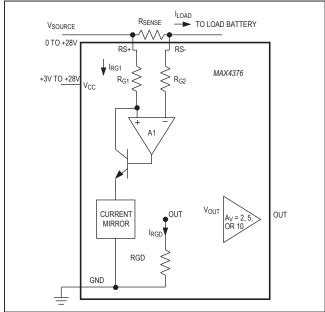

Current Source Circuit

Figure 3 shows a block diagram using the MAX4376 with a switching regulator to make a current source.

Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

Table 1. Recommended Component Values

FULL-SCALE LOAD CURRENT, ILOAD (A)	CURRENT-SENSE RESISTOR, RSENSE (mΩ)	GAIN (+V/V)	FULL-SCALE OUTPUT VOLTAGE (FULL-SCALE VSENSE = 100mV), VOUT (V)
0.1	1000	20	2.0
		50	5.0
		100	10.0
1	100	20	2.0
		50	5.0
		100	10.0
5	20	20	2.0
		50	5.0
		100	10.0
10	10	20	2.0
		50	5.0
		100	10.0

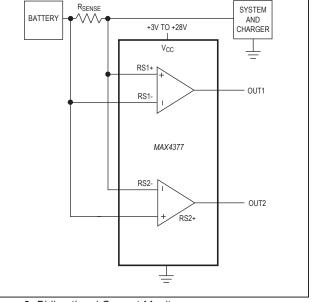


Figure 1. Functional Diagram

Figure 2. Bidirectional Current Monitor

Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

Figure 3. Current Source

Ordering Information

PART	GAIN (+V/V)	TEMP ANGE	PIN- PACKAGE	TOP MARK
MAX4376TAUK+T	20	-40°C to +125°C	5 SOT23	ADOG
MAX4376TAUK/V+T	20	-40°C to +125°C	5 SOT23	AMGC
MAX4376FAUK+T	50	-40°C to +125°C	5 SOT23	ADOH
MAX4376FAUK/V+T	50	-40°C to +125°C	5 SOT23	AMJI
MAX4376HAUK+T	100	-40°C to +125°C	5 SOT23	ADOI
MAX4376HAUK/V+T	100	-40°C to +125°C	5 SOT23	AFGO
MAX4376TASA+	20	-40°C to +125°C	8 SO	—
MAX4376FASA+	50	-40°C to +125°C	8 SO	—
MAX4376HASA+	100	-40°C to +125°C	8 SO	_
MAX4377TAUA+	20	-40°C to +125°C	8 µMAX	—
MAX4377FAUA+	50	-40°C to +125°C	8 µMAX	_
MAX4377HAUA+	100	-40°C to +125°C	8 µMAX	—
MAX4377TASA+	20	-40°C to +125°C	8 SO	_
MAX4377FASA+	50	-40°C to +125°C	8 SO	_
MAX4377HASA+	100	-40°C to +125°C	8 SO	—
MAX4378TAUD+	20	-40°C to +125°C	14 TSSOP	_
MAX4378FAUD+	50	-40°C to +125°C	14 TSSOP	_
MAX4378HAUD+	100	-40°C to +125°C	14 TSSOP	_
MAX4378TASD+	20	-40°C to +125°C	14 SO	_
MAX4378FASD+	50	-40°C to +125°C	14 SO	_
MAX4378HASD+	100	-40°C to +125°C	14 SO	

+Denotes a lead (Pb)-free/RoHS-compliant package. N denotes an automotive qualified part. T = Tape and reel.

Chip Information

PROCESS: BICMOS

Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGETYPE	PACKAGECODE	OUTLINE NO.	LAND PATTERN NO.
8 SOIC	S8+2	<u>21-0041</u>	<u>90-0096</u>
8 µMAX	U8+1	<u>21-0036</u>	<u>90-0092</u>
14 SOIC	S14+1	<u>21-0041</u>	90-0096
14 TSSOP	U14+1	21-0066	<u>90-0117</u>

Single/Dual/Quad, High-Side Current-Sense Amplifiers with Internal Gain

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
4	4/09	Added automotive part number and lead-free designations	1, 9
5	6/10	Clarified 0V to 2V is not a high-accuracy range for the device, added soldering temperature and <i>Package Information</i> section	1, 2, 10
6	2/11	Specified VRS+ value	2, 3
7	10/12	Added MAX4376HASA+ and MAX4376TAUK/V+T to Ordering Information	1
8	4/18	Updated Ordering Information table and Features section	1
9	7/18	Updated Features section, Pin Configuration diagram, and Ordering Information table	1, 9
10	7/18	Updated Package Information table	11
11	8/18	Updated Package Information table	11
12	12/18	Updated package code	2
13	11/19	Updated Package Information	2

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. | 13