SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Symbol	Parameter	Conditions	Ratings	Unit
I _{CC max}	Maximum input current	t ≤ 20 ms	200	mA
Vоит	Output voltage	LB1863M LB1869M	-0.3 to +85 -0.3 to +60	V
Іоит	Output current		1.5	Α
IRD	RD influx current		10	mA
VRD	RD voltage		30	V
P _d max	Allowable power dissipation	When mounted (on a $20 \times 15 \times 1.5$ -mm ³ glass-epoxy printed circuit board)	800	mW
T _{opr}	Operating temperature		-30 to +80	°C
T _{stg}	Storage temperature		-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ALLOWABLE OPERATING RANGES $(T_A = 25^{\circ}C)$

Symbol	Parameter	Conditions	Ratings	Unit
I _{CC}	Input Current Range		6.0 to 50	mA
V _{ICM}	Common-mode Input Voltage Range		0 to V _{IN} – 1.5	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C, $I_{CC} = 10$ mA)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OR}	Output Voltage 1	LB1863M	80	-	-	V
		LB1869M	60	-	-	V
V _{O(SUS)}	Output Voltage 2	LB1863M: I _O = 0.1 A	65	-	-	V
		LB1869M: I _O = 0.1 A	40	-	-	V
V _{O(sat)1}	Output Saturation Voltage	I _O = 0.5 A	_	0.95	1.2	V
V _{O(sat)2}	7	I _O = 1.0 A	_	1.15	1.5	V
V _{IN}	Input Voltage	I _{CC} = 7.0 mA	6.4	6.7	7.0	V
V _{OFF}	Amplifier Input Offset Voltage		-7	0	+7	mA
I _{BA}	Amplifier Input Bias Current		-250	-	-	nA
V _{RD(sat)}	RD Output Saturation Voltage	I _{RD} = 5 mA	_	0.1	0.3	V
I _{C1}	Capacitor Discharge Current		2.1	3	3.9	μΑ
I _{C2}	7		0.31	0.44	0.59	μΑ
V _{TH1}	Comparator Input Threshold Voltage		0.77	0.8 V _{IN}	0.83	V
V _{TH2}			0.42	0.45 V _{IN}	0.48	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

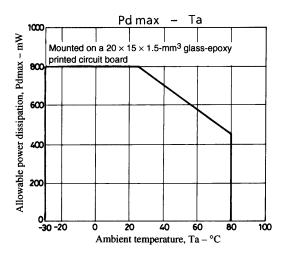


Figure 1. P_d max – T_A

BLOCK DIAGRAM

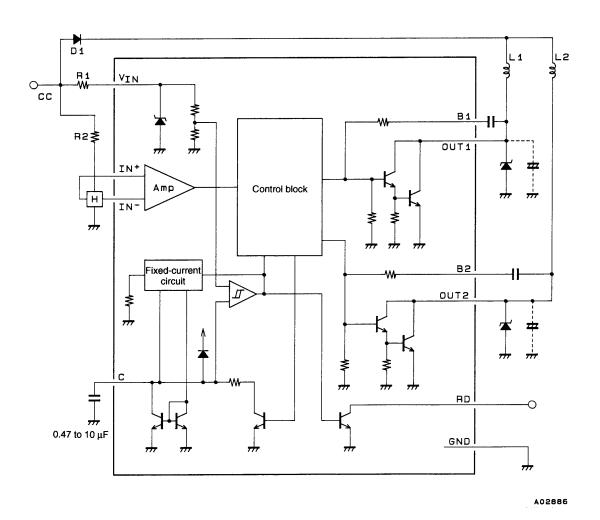


Figure 2. Block Diagram

APPLICATION CIRCUIT

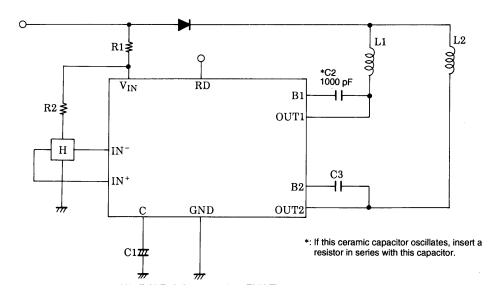


Figure 3. Sample Application Circuit

SAMPLE APPLICATION CIRCUIT OUTPUT WAVEFORMS

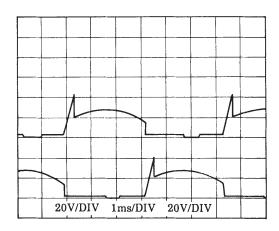


Figure 4. Output Waveforms

TRUTH TABLE

IN+	IN-	С	OUT1	OUT2	RD
Н	L	L	Н	L	L
L	Н		L	Н	
Н	L	Н	Н	Н	Н
L	Н				

DESIGN DECUMENTATION

(See the Application Circuit Diagram)

1. Power-supply Voltage (V_{IN} Pin) Since these miniature flat package products supply power to the Hall amplifier block and the control block from an internal parallel regulator, they operate with good stability with respect to kickback currents from the motor and variations in the power–supply voltage. They also provide an adequate ability to withstand surges. The resistor R1 between the V_{CC} and V_{IN} pins should be set up so that a current in the range I_{CC} = 6 to 50 mA flows into the V_{IN} pin in the fan motor power-supply voltage range. V_{IN} has a typical value of 6.7 V when I_{CC} is 7 mA. The current flowing into V_{IN} can be calculated with the following formula.

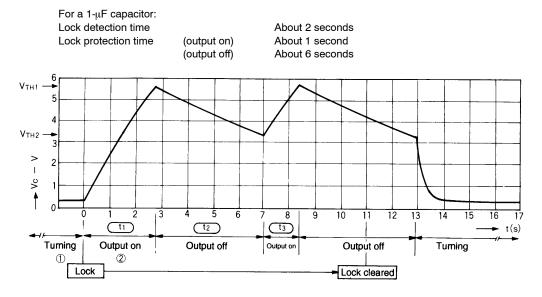
$$I_{CC} = \frac{V_{CC} - V_{IN}}{R1}$$
 (eq. 1)

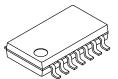
Abnormal voltage considerations
 The maximum allowable current for the V_{IN} pin is 200 mA. Therefore, the IC design allows it to withstand voltages up to the plus side abnormal voltage V_{surge} give by formula (2).

$$V_{surge} = V_{IN} + R1 \times 20 \text{ mA}$$
 (eq. 2)

2. Hall Input Pin Voltages (IN– and IN+ Pins) The Hall element output voltages to the Hall element input pins must be in the range 0 to (V_{IN} –1.5 V). The gain from the Hall input pins to the output pin is over 100 dB. The Hall input amplifier offset voltage is ± 7 mV. This means that the Hall element output must be set up taking this ± 7 mV offset into account.

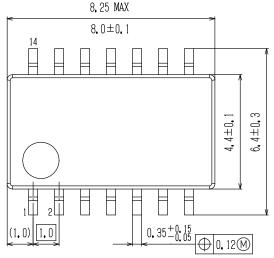
- 3. Output Transistors (OUT1 and OUT2 Pins) Output current: I_O = 1.5 A maximum Output saturation voltage: V_{Osat} = 1.15 V/1.0 A (typical)
 - Applications should adopt one of the following three output protection techniques.
 - ① If a capacitor is inserted between OUT and ground, use a capacitor with a value up to $C=10~\mu F$, and design that value so that the kickback and reverse voltages do not exceed V_{OR}
 - ② If a Zener diode is added, determine a value for the Zener voltage that is lower than V_{O(SUS)}. If radio-frequency noise is a problem, insert a capacitor between B1 and B2.
- 4. Output Protection Function (C Pin)
 This pin connects the capacitor that forms the
 automatic recovery circuit. If rotation stops due to,
 for example, a motor overload, the pin voltage
 rises and the output stops. The system
 automatically recovers from stopped to drive mode
 when the load is set to an appropriate level.
 The lock detection time can be set by changing the
 value of the capacitor.

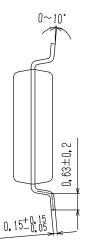


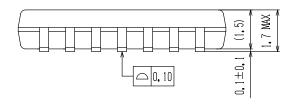

Figure 5. Automatic Recovery Circuit Pin C Voltage

- ① While the blades are turning, the capacitor is charged with a current of about 3 μA (typical), and C is discharged by pulses that correspond to the motor speed.
- ② When the blades lock, the capacitor is no longer discharged, and the voltage across the capacitor increases. The output is turned off when that voltage reaches $0.8 \times V_{IN}$.
- ③ When the output is turned off, the capacitor is discharged at a current of about 0.44 μA (typical). When the capacitor voltage falls under VTH2, if the lock state is not yet cleared the capacitor continues discharging until VTH1. (Note that the output is turned on at this time.) These operations, i.e. items ② and ③, are repeated with a ton:toff ratio of about 1:6 to protect the motor.
- 4 If the lock state has been cleared when the capacitor voltage reaches V_{TH2} , motor rotation is started by turning the output on.
- Rotation Detection Signal (RD Pin)
 This is an open collector output, and outputs a low level in drive mode and a high level when the motor is stopped.
- Radio-frequency Noise Reduction Function (B1 and B2 Pins)
 These are base pins for Darlington pair outputs. Add capacitors of about 0.01 to 0.1 μF if radio-frequency noise is a problem.
- 7. Thermal Shutdown Function
 Turns off the output in response to coil shorting or IC overheating.

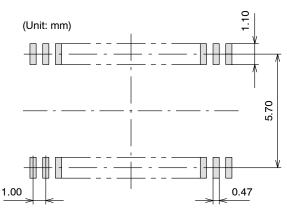
ORDERING INFORMATION

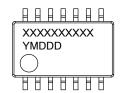

Device	Package	Wire Bond	Shipping [†] (Qty / Packing)
LB1863M-MPB-E	SOIC14 W / MFP14S (225 mil) (Pb-Free)	Au wire	60 / Fan-Fold
LB1863M-MPB-H	SOIC14 W / MFP14S (225 mil) (Pb-Free / Halogen Free)	Au wire	60 / Fan-Fold
LB1863M-TLM-E	SOIC14 W / MFP14S (225 mil) (Pb-Free)	Au wire	1,000 / Tape & Reel
LB1863M-TLM-H	SOIC14 W / MFP14S (225 mil) (Pb-Free / Halogen Free)	Au wire	1,000 / Tape & Reel
LB1863M-W-AH	SOIC14 W / MFP14S (225 mil) (Pb-Free / Halogen Free)	Cu wire	1,000 / Tape & Reel
LB1869M * Discontinued	SOIC14 W / MFP14S (225 mil) (Pb-Free)	Au wire	-/-


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



SOIC14 W / MFP14S (225 mil) CASE 751CB ISSUE A


DATE 25 OCT 2013


SOLDERING FOOTPRINT*

NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

Y = Year

M = Month

DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON67224E	Electronic versions are uncontrolle	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Prir versions are uncontrolled except when stamped	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC14 W / MFP14S (225 MIL)		PAGE 1 OF 2

ON Semiconductor®

DOCUMENT NUMBER: 98AON67224E

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM SANYO ENACT# S-002 TO ON SEMICONDUCTOR. REQ. BY D. TRUHITTE.	29 FEB 2012
Α	ADDED MARKING AND SOLDER FOOTPRINT INFORMATION. REQ. BY D. TRUHITTE	25 OCT 2013

ON Semiconductor and una are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out or the application or use or any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that SCILLC was penilient regarding the design or granufacture of the part SCILLC is an Equal associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Case Outline Number:

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and separating the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, emplo

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative