Contents L6932H1.2 # **Contents** | 1 | Pin s | settings | 3 | |---|-------|----------------------------|---| | | 1.1 | Pin connection | 3 | | | 1.2 | Pin description | 3 | | 2 | Max | imum ratings | 4 | | | 2.1 | Absolute maximum ratings | 4 | | | 2.2 | Thermal data | 4 | | 3 | Bloc | k diagram | 4 | | 4 | Elec | trical characteristics | 5 | | 5 | Турі | cal electrical performance | 6 | | 6 | Арр | lication informations | 7 | | | 6.1 | Application circuit | 7 | | | 6.2 | Demoboard layout | 7 | | | 6.3 | Component part list | 8 | | 7 | Com | nponents selection | 8 | | | 7.1 | Input capacitor | 8 | | | 7.2 | Output capacitor | 8 | | | 7.3 | Loop Stability | 9 | | 8 | Pack | kage mechanical data | 0 | | 9 | Revi | ision history | 2 | L6932H1.2 Pin settings # 1 Pin settings ## 1.1 Pin connection Figure 2. Pin connection (top view) # 1.2 Pin description Table 2. Pin description | Name | Pin N° | Description | | |------|-------------|--|--| | 1 | EN | Enables the device when connected to Vin and disables it when forced to GND. | | | 2 | VIN | Supply voltage. This pin is connected to the drain of the internal N-mos. Connect this pin to a capacitor larger than 10µF. | | | 3 | FB | Connecting this pin to a voltage divider it is possible to program the output voltage between 1.2V and 5V. | | | 4 | VOUT | Regulated output voltage. This pin is connected to the source of the internal N-mos. Connect this pin to a capacitor of $10\mu F$. | | | 5 | PGOOD | Power good output. The pin is open drain and detects the output voltage. It is forced low if the output voltage is lower than 90% of the programmed voltage. | | | 6 | GND | Ground pin | | | 7, 8 | NC1-
NC2 | Internally not connected. | | Maximum ratings L6932H1.2 # 2 Maximum ratings ## 2.1 Absolute maximum ratings **Table 3. Absolute maximum ratings** | Symbol | Parameter | Value | Unit | |-----------------|-----------------|--------------------|------| | V _{IN} | VIN and PGOOD | 14.5 | V | | | EN, OUT and ADJ | -0.3 to (Vin +0.3) | V | #### 2.2 Thermal data Table 4. Thermal data | Symbol | Parameter | Value | Unit | |-------------------|---|-------------------|------| | R _{thJA} | Maximum thermal resistance junction-ambient | 34 ⁽¹⁾ | °C/W | | T _{MAX} | Maximum junction temperature | 150 | °C | | T _{STG} | Storage temperature range | -65 to 150 | °C | ^{1.} Package mounted on board # 3 Block diagram Figure 3. Internal block diagram ## 4 Electrical characteristics **Table 5. Electrical characteristcs** ($T_J = 25^{\circ}C$, $V_{IN} = 5V$ unless otherwise specified) | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |---------------------|-----------------------------|--|-------|------|-------|------| | V _{IN} | Operating Supply
Voltage | | 2 | | 14 | ٧ | | V _O | Output voltage | $I_{O} = 0.1A; V_{IN} = 3.3V$ | 1.188 | 1.2 | 1.212 | V | | | | $V_{IN} = 2.5V \pm 10\%; I_O = 10mA$ | | | 5 | mV | | | Line Regulation | $V_{IN} = 3.3V \pm 10\%; I_O = 10mA$ | | | 5 | mV | | | | $V_{IN} = 5V \pm 10\%; I_O = 10mA$ | | | 5 | mV | | | Load Regulation | V _{IN} = 3.3V; 0.1A < I _O < 2A | | | 15 | mV | | r _{DS(on)} | Drain Source ON resistance | | | | 200 | mΩ | | l _{occ} | Current limiting | | 2.3 | 2.5 | 2.7 | Α | | Iq | Quiescent current | | | 0.2 | 0.4 | mA | | Ish | Shutdown current | 2V < V _{IN} < 14V ⁽¹⁾ | | | 25 | μΑ | | | Ripple Rejection | $f = 120Hz, I_O = 1A V_{IN} = 5V,$
$\Delta V_{IN} = 2Vpp$ | 60 | 75 | | dB | | Ven | EN Input Threshold | | 0.5 | 0.65 | 0.8 | V | | | Pgood threshold | Vo rise | | 90 | | %Vo | | | Pgood Hysteresis | | | 10 | | %Vo | | | Pgood saturation | Ipgood = 1mA | | 0.2 | 0.4 | V | ^{1.} Specification referred to T from -25°C to 125°C. # 5 Typical electrical performance Figure 4. Output voltage vs junction temperature 1.213 1.212 1.211 1.210 1.210 1.210 1.210 1.210 1.200 -60 -40 -20 0 20 40 60 80 100 120 140 160 Temp [°C] Figure 5. Quiescent current vs junction temperature Figure 6. Shutdown current vs junction temperature 577 6/13 # 6 Application information ## 6.1 Application circuit Figure 7. Demoboard application circuit $$V_{OUT} = \frac{1.2}{R_2} \times (R_1 + R_2)$$ ## 6.2 Demoboard layout Figure 8. Demoboard layout #### 6.3 Component part list Table 6. Component par list | Reference | Part number | Description | Manufacturer | |-----------|-------------------|-------------|--------------| | C1 | GRM32ER6C226KE20B | 22Uf, 16V | MURATA | | C2 | GRM32ER6C226KE20B | 22Uf, 16V | MURATA | | R1 | | N.M. | | | R2 | | 0Ω | | | R3 | | 100K | | ## 7 Components selection ## 7.1 Input capacitor The input capacitor value depends on a lot of factors such as load transient requirements, input source (battery or DC/DC converter) and its distance from the input cap. Usually a $47\mu F$ is enough for any application but a much lower value can be sufficient in many cases. ## 7.2 Output capacitor The output capacitor choice depends basically on the load transient requirements. Tantalum, Special Polymer, POSCAP and aluminum capacitors are good and offer very low ESR values. Multilayer ceramic caps have the lowest ESR and can be required for particular applications. Nevertheless in several applications they are ok, the loop stability issue has to be considered (see loop stability section). Below a list of some suggested capacitor manufacturers Table 7. Suggested capacitor | Manufacturer | Туре | Cap Value (μF) | Rated Voltage (V) | |--------------|----------|----------------|-------------------| | MURATA | CERAMIC | 1 to 47 | 4 to 16 | | PANASONIC | CERAMIC | 1 to 47 | 4 to 16 | | TAYO YUDEN | CERAMIC | 1 to 47 | 4 to 16 | | TDK | CERAMIC | 1 to 47 | 4 to 16 | | TOKIN | CERAMIC | 1 to 47 | 4 to 16 | | SANYO | POSCAP | 1 to 47 | 4 to 16 | | PANASONIC | SP | 1 to 47 | 4 to 16 | | KEMET | TANTALUM | 1 to 47 | 4 to 16 | ## 7.3 Loop Stability The stability of the loop is affected by the zero introduced by the output capacitor. The time constant of the zero is given by: $$T = ESR \times C_{OUT}$$ $$F_{ZERP} = \frac{1}{2\pi \times ESR \times C_{OUT}}$$ This zero helps to increase the phase margin of the loop until the time constant is higher than some hundreds of nsec, depending also on the output voltage and current. So, using very low ESR ceramic capacitors could produce oscillations at the output, in particular when regulating high output voltages (adjustable version). To solve this issue is sufficient to add a small capacitor (e.g. 1nF to 10nF) in parallel to the high side resistor of the external divider, as shown in *Figure 9*. Figure 9. Compensation network The thermal resistance junction to ambient of the demoboard is approximately 34°C/W. This mean that, considering an ambient temperature of 60°C and, a maximum junction temperature of 150°C, the maximum power that the device can handle is 2.7W. This means that the device is able to deliver a DC output current of 2A only with a very low dropout. ## 8 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com Table 8. HSO-8 Mechanical data | Dim. | mm. | | | inch | | | |--------|-----------|------|------|-------|-------|-------| | Diiii. | Min | Тур | Max | Min | Тур | Max | | Α | 1.35 | | 1.75 | 0.053 | | 0.069 | | A1 | 0.10 | | 0.25 | 0.04 | | 0.010 | | A2 | 1.10 | | 1.65 | 0.043 | | 0.065 | | В | 0.33 | | 0.51 | 0.013 | | 0.020 | | С | 0.19 | | 0.25 | 0.007 | | 0.010 | | D | 4.80 | | 5.00 | 0.189 | | 0.197 | | D1 | | 3.1 | | | 0.122 | | | E | 3.80 | | 4.00 | 0.150 | | 0.157 | | E1 | | 2.4 | | | 0.094 | | | е | | 1.27 | | | 0.050 | | | Н | 5.80 | | 6.20 | 0.228 | | 0.244 | | h | 0.25 | | 0.50 | 0.010 | | 0.020 | | L | 0.40 | | 1.27 | 0.016 | | 0.050 | | k | 8° (max.) | | | | | | | ddd | | | 0.1 | | | 0.04 | Figure 10. Package dimensions Revision history L6932H1.2 # 9 Revision history Table 9. Revision history | Date | Revision | Changes | | |-------------|----------|---|--| | 23-Jun-2006 | 1 | First release | | | 07-May-2007 | 2 | Final release, mechanical data pad size updated | | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 577 13/13