
IS66WV51216DALL IS66/67WV51216DBLL

PIN CONFIGURATIONS:

48-Ball mini BGA (6mm x 8mm)

44-Pin TSOP (Type II)

A4 🗖 1	44 🗖 A5
	43 🗖 A6
	42 G A7
$\overline{\text{CS1}} \square 6$	39 G E
	38 🗖 I/O15
I/O1 🗖 8	37 🗖 I/O14
I/O2 🔲 9	36 🗖 1/013
I/O3 🔲 10	35 🗖 1/012
Vdd 🗖 11	34 🗖 GND
GND 🔲 12	33 🗖 Vdd
I/O4 🔲 13	32 🗖 I/O11
I/O5 🔲 14	31 🗖 I/O10
I/O6 🔲 15	30 🔲 1/O9
I/O7 [16	29 🗖 I/O8
WE [17	28 🗖 A18
A16 🔲 18	27 🔲 A8
A15 [19	26 🔲 A9
A14 20	25 A10
A13 21	24 A11
A12 22	23 🗖 A17

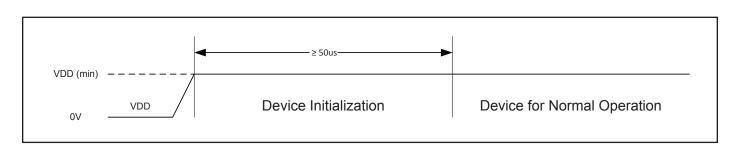
PIN DESCRIPTIONS

A0-A18	Address Inputs
I/00-I/015	Data Inputs/Outputs
CS1, CS2	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
Vdd	Power
GND	Ground

TRUTH TABLE

					I/O PIN			
Mode	WE	CS1	CS2	ŌĒ	LB	UB	I/O0-I/O7 I/O8-I/O15 VDD Current	
Not Selected	Х	Н	Х	Х	Х	Х	High-Z High-Z IsB1, ISB2	
	Х	Х	L	Х	Х	Х	High-Z High-Z ISB1, ISB2	
	Х	Х	Х	Х	Н	Н	High-Z High-Z IsB1, ISB2	
Output Disabled	Н	L	Н	Н	L	Х	High-Z High-Z Icc	
	Н	L	Н	Н	Х	L	High-Z High-Z Icc	
Read	Н	L	Н	L	L	Н	Dout High-Z Icc	
	Н	L	Н	L	Н	L	High-Z Dout	
	Н	L	Н	L	L	L	D оит D оит	
Write	L	L	Н	Х	L	Н	DIN High-Z Icc	
	L	L	Н	Х	Н	L	High-Z DIN	
	L	L	Н	Х	L	L	Din Din	

Note:


CS2 input signal pin is only available for 48-ball mini BGA package parts. CS2 input is internally enabled for 44-pin TSOP-II package parts.

OPERATING RANGE (VDD)

Range	Ambient Temperature	IS66WV51216DALL (70ns)	IS66WV51216DBLL (55ns, 70ns)	IS67WV51216DBLL (55ns, 70ns)
Industrial	-40°C to +85°C	1.7V - 1.95V	2.5V - 3.6V	_
Automotive, A1	-40°C to +85°C	_	_	2.5V - 3.6V
Automotive, A2	–40°C to +105°C	_	_	2.5V - 3.6V

POWER-UP INITIALIZATION

IS66WV512616DALL/DBLL and IS67WV512616DBLL include an on-chip voltage sensor used to launch the power-up initialization process. When VDD reaches a stable level at or above the VDD (min), the device will require 50µs to complete its self-initialization process. During the initialization period, \overline{CS} should remain HIGH. When initialization is complete, the device is ready for normal operation.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.2 to VDD+0.3	V
TBIAS	Temperature Under Bias	-40 to +85	°C
Vdd	VDD Related to GND	-0.2 to +3.8	V
Tstg	Storage Temperature	-65 to +150	°C
Р⊤	Power Dissipation	1.0	W

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

VDD = 2.5	/-3.6V					
Symbol	Parameter	Test Conditions	Vdd	Min.	Max.	Unit
Vон	Output HIGH Voltage	Іон = -1 mA	2.5-3.6V	2.2		V
Vol	Output LOW Voltage	loL = 2.1 mA	2.5-3.6V	_	0.4	V
Vih	Input HIGH Voltage ⁽¹⁾		2.5-3.6V	2.2	VDD + 0.3	V
VIL	Input LOW Voltage ⁽¹⁾		2.5-3.6V	-0.2	0.6	V
Iц	Input Leakage	$GND \leq V \text{In} \leq V \text{dd}$		-1	1	μA
ILO Notoo:	Output Leakage	$GND \leq VOUT \leq VDD, OUT$	Itputs Disabled	-1	1	μA

Notes:

1. VILL (min.) = -2.0V AC (pulse width < 10ns). Not 100% tested.

VIHH (max.) = VDD + 2.0V AC (pulse width < 10ns). Not 100% tested.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range) VDD = 1.7V-1.95V

Symbol	Parameter	Test Conditions	Vdd	Min.	Max.	Unit
Vон	Output HIGH Voltage	Іон = -0.1 mA	1.7-1.95V	1.4		V
Vol	Output LOW Voltage	lo∟ = 0.1 mA	1.7-1.95V		0.2	V
Vін	Input HIGH Voltage ⁽¹⁾		1.7-1.95V	1.4	VDD + 0.2	V
VIL	Input LOW Voltage ⁽¹⁾		1.7-1.95V	-0.2	0.4	V
LI	Input Leakage	$GND \leq V \text{in} \leq V \text{dd}$		-1	1	μA
Ilo	Output Leakage	$GND \leq VOUT \leq VDD, C$	outputs Disabled	-1	1	μA

Notes:

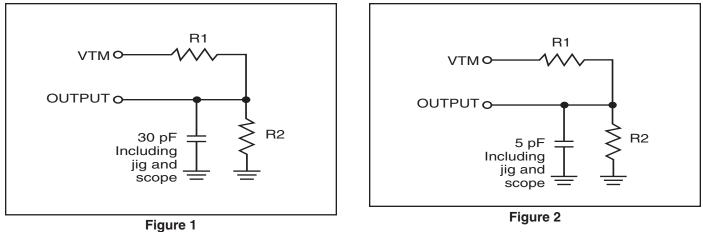
1. VILL (min.) = -1.0V AC (pulse width < 10ns). Not 100% tested.

VIHH (max.) = VDD + 1.0V AC (pulse width < 10ns). Not 100% tested.

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	8	pF
Соит	Input/Output Capacitance	Vout = 0V	10	pF

Note:


1. Tested initially and after any design or process changes that may affect these parameters.

AC TEST CONDITIONS

Parameter	1.7V-1.95V (Unit)	2.5V-3.6V (Unit)	
Input Pulse Level	0.4V to VDD-0.2	0.4V to VDD-0.3V	
Input Rise and Fall Times	5 ns	5ns	
Input and Output Timing and Reference Level	Vref	Vref	
Output Load	See Figures 1 and 2	See Figures 1 and 2	

	1.7V - 1.95V	2.5V - 3.6V
R1(Ω)	3070	1029
R2(Ω)	3150	1728
VREF	0.9V	1.4V
Vтм	1.8V	2.8V

AC TEST LOADS

Integrated Silicon Solution, Inc. — www.issi.com Rev. C 08/25/2014

Symbol	Parameter	Test Conditions		Max. 70ns	Unit
Icc	VDD Dynamic Operating Supply Current	$V_{DD} = Max.,$ lout = 0 mA, f = fMAX All Inputs 0.4V or VDD - 0.2V	Com. Ind. Auto.	20 25 30	mA
Icc1	Operating Supply Current	$\frac{V_{DD} = Max., \overline{CS1} = 0.2V}{WE = V_{DD} - 0.2V}$ $CS2 = V_{DD} - 0.2V, f = 1_{MHZ}$	Com. Ind. Auto.	4 4 10	mA
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:VDD} \begin{array}{l} V_{DD} = Max., \\ V_{IN} = V_{IH} \mbox{ or } V_{IL} \\ \hline CS1 = V_{IH} \mbox{ , } CS2 = V_{IL}, \\ f = 1 \mbox{ MHz} \end{array}$	Com. Ind. Аито.	0.6 0.6 1	mA
	OR				
	ULB Control	$\frac{V_{DD} = Max., V_{IN} = V_{IH} \text{ or } V_{IL}}{\overline{CS1} = V_{IL}, f = 0, \overline{UB} = V_{IH}, \overline{L}}$			
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{split} & \frac{V_{DD} = Max.,}{\overline{CS1} \geq V_{DD} - 0.2V,} \\ & CS2 \leq 0.2V, \\ & V_{IN} \geq V_{DD} - 0.2V, \text{ or} \\ & V_{IN} \leq 0.2V, \text{ f} = 0 \end{split}$	Com. Ind. Auto.	100 120 150	μΑ
	OR				
	ULB Control	$\begin{array}{l} V_{DD} = Max., \ \overline{CS1} = V_{IL}, \ C\\ \overline{V_{IN}} \geq V_{DD} - 0.2V, \ or \ V_{IN} \leq \\ \overline{UB} \ / \ \overline{LB} = V_{DD} - 0.2V \end{array}$			

1.7V-1.95V POWER SUPPLY CHARACTERISTICS (Over Operating Range)

Note:

1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

2.5V-3.6V POWER SUPPLY CHARACTERISTICS (Over Operating Range)

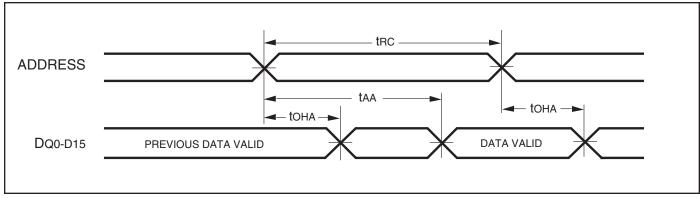
Symbol	Parameter	Test Conditions		Max. 55ns	Unit	
Icc	VDD Dynamic Operating Supply Current	Vdd = Max., Iout = 0 mA, f = fmax	Com. Ind.	25 28	mA	
		All Inputs 0.4V or Vod – 0.3V	Auto. typ. ⁽²⁾	35 15		
Icc1	Operating Supply Current	$\frac{V_{DD} = Max., \overline{CS1} = 0.2V}{\overline{WE} = V_{DD} - 0.2V}$	Ind.	5 5	mA	
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:started_constraints} \begin{split} & CS2 = V_{DD} - 0.2V, f = 1 \text{M} \\ & V_{DD} = Max., \\ & V_{IN} = V_{IH} \text{ or } V_{IL} \\ & \overline{CS1} = V_{IH} \text{ , } CS2 = V_{IL}, \\ & f = 1 \text{ MHz} \end{split}$	HZAUTO. Com. Ind. Auto.	10 0.6 0.6 1	mA	
	OR					
	ULB Control	$\frac{V_{DD}}{CS1} = Max., V_{IN} = V_{IH} \text{ or } V_{\overline{CS1}} = V_{IL}, f = 0, \overline{UB} = V_{IH}$				
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{split} & \frac{V_{\text{DD}} = \text{Max.},}{\overline{CS1} \geq V_{\text{DD}} - 0.2\text{V},} \\ & \text{CS2} \leq 0.2\text{V}, \\ & \text{V}_{\text{IN}} \geq V_{\text{DD}} - 0.2\text{V}, \text{ or} \\ & \text{V}_{\text{IN}} \leq 0.2\text{V}, \text{f} = 0 \end{split}$	Com. Ind. Auto. typ. ⁽²⁾	100 130 150 75	μΑ	
	OR					
	ULB Control	$\begin{array}{l} V_{DD} = Max., \ \overline{CS1} = V_{IL} \\ V_{IN} \geq V_{DD} - 0.2V, \ \text{or} \ V_{IN} \\ \overline{UB} \ / \ \overline{LB} = V_{DD} - 0.2V \end{array}$				

Note:

1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change. 2. Typical values are measured at VDD = 3.0V, TA = 25°C and not 100% tested.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		55 n	55 ns		70 ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t RC	Read Cycle Time	55	—	70	—	ns
taa	Address Access Time	—	55	—	70	ns
tона	Output Hold Time	10	—	10	—	ns
tacs1/tacs2	CS1/CS2 Access Time	_	55	_	70	ns
t doe	OE Access Time		25	_	35	ns
thzoe ⁽²⁾	OE to High-Z Output		20	_	25	ns
tlzoe ⁽²⁾	OE to Low-Z Output	5		5	_	ns
tHZCS1/tHZCS2 ⁽²⁾	CS1/CS2 to High-Z Output	0	20	0	25	ns
tLZCS1/tLZCS2 ⁽²⁾	CS1/CS2 to Low-Z Output	10		10		ns
tва	LB, UB Access Time	_	55	_	70	ns
tнzв	LB, UB to High-Z Output	0	20	0	25	ns
tlzb	LB, UB to Low-Z Output	0	_	0	_	ns
tcsm (3)	CS# low pulse width	55	15,000	70	15,000	ns

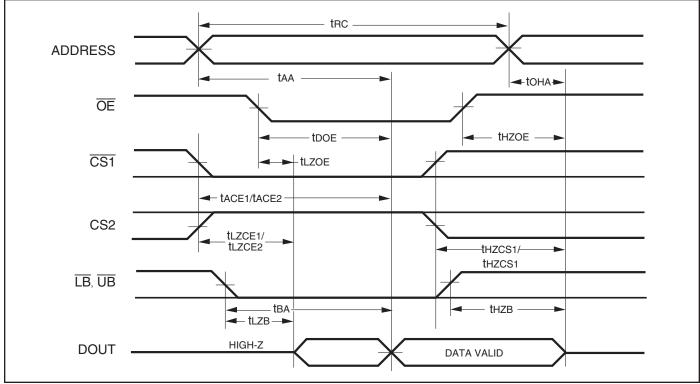

Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1.

2. Tested with the load in Figure 2. Transition is measured ±100 mV from steady-state voltage. Not 100% tested.

3. Refer to Avoidable Timing and Recommendations for clear definiton.

AC WAVEFORMS



READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CS1} = \overline{OE} = V_{IL}$, $CS2 = \overline{WE} = V_{IH}$, \overline{UB} or $\overline{LB} = V_{IL}$)

AC WAVEFORMS

READ CYCLE NO. 2^(1,3) (CS1, CS2, OE, AND UB/LB Controlled)

Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CS1}$, \overline{UB} , or $\overline{LB} = V_{IL}$. $CS2=\overline{WE}=V_{IH}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CS1}}$ LOW transition.

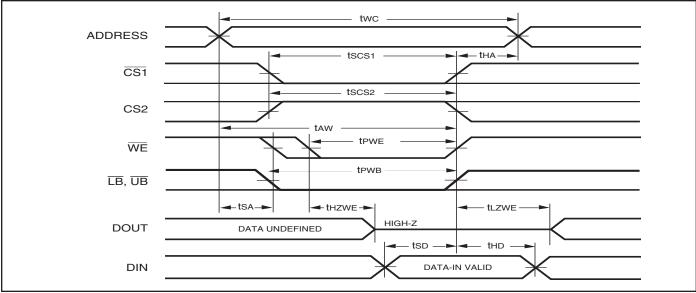
WRITE CYCLE SWITCHING CHARACTERISTICS^(1,2) (Over Operating Range)

		55	ns	70 n	S	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	55	—	70	_	ns
tscs1/tscs	2 CS1/CS2 to Write End	45	—	60	_	ns
taw	Address Setup Time to Write End	45	_	60	_	ns
tна	Address Hold from Write End	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	ns
tрwв	$\overline{\text{LB}}$, $\overline{\text{UB}}$ Valid to End of Write	45		60	_	ns
tPWE ⁽⁴⁾	WE Pulse Width	45	15,000(5)	60	15,000 ⁽⁵⁾	ns
t sd	Data Setup to Write End	25	_	30	_	ns
tнd	Data Hold from Write End	0		0		ns
thzwe ⁽³⁾	WE LOW to High-Z Output		20		30	ns
tlzwe ⁽³⁾	WE HIGH to Low-Z Output	5	_	5		ns

Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1.

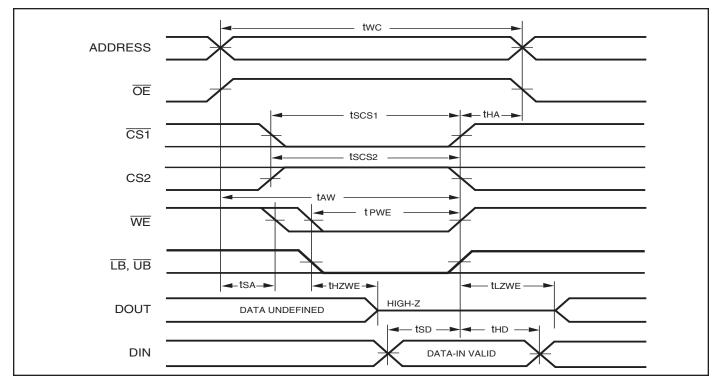
2. The internal write time is defined by the overlap of CS1 LOW, CS2 HIGH and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.


3. Tested with the load in Figure 2. Transition is measured ±100 mV from steady-state voltage. Not 100% tested.

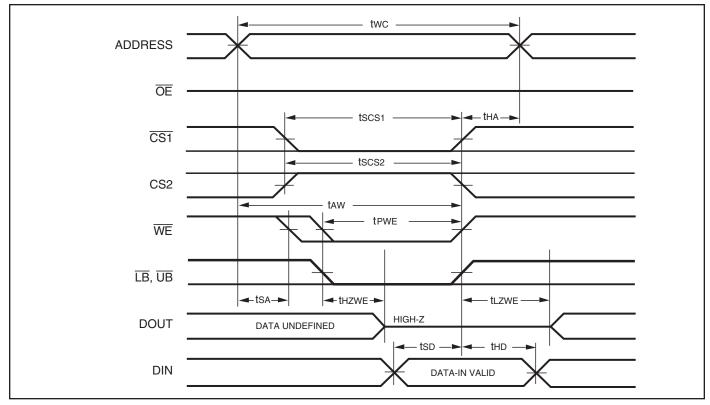
4. tPWE > tHZWE + tSD when \overline{OE} is LOW.

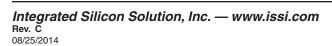
5. Refer to Avoidable Timing and Recommendations for clear definition.

AC WAVEFORMS

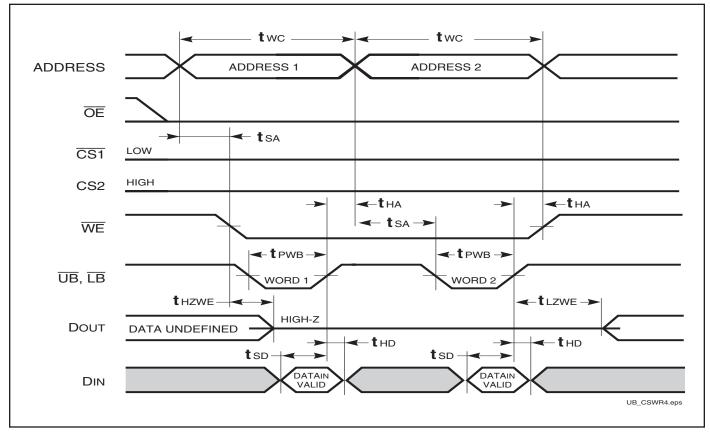

WRITE CYCLE NO. $1^{(1,2)}$ ($\overline{CS1}$ Controlled, \overline{OE} = HIGH or LOW)

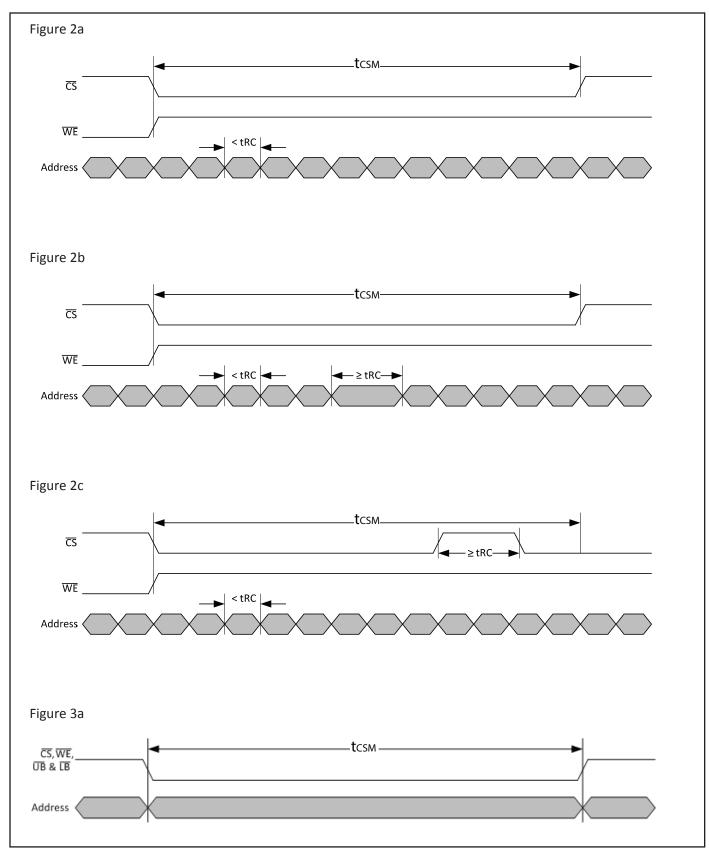
Notes:


- 1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the CS1, CS2 and WE inputs and at least one of the LB and UB inputs being in the LOW state.
- 2. WRITE = $(\overline{CS1}) [(\overline{LB}) = (\overline{UB})'] (\overline{WE}).$

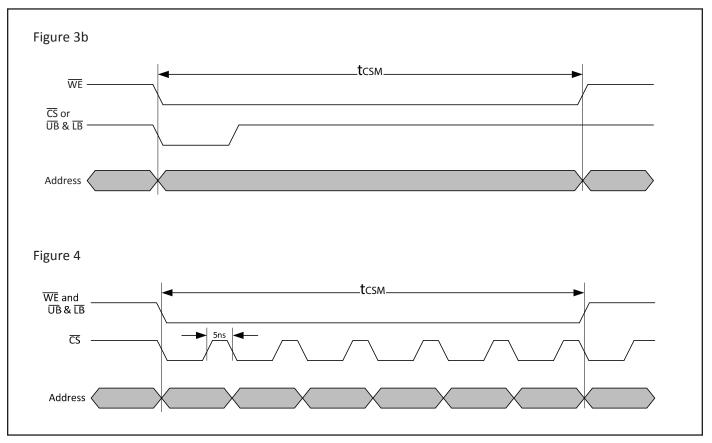


WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)


WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)



WRITE CYCLE NO. 4 (UB/LB Controlled)


AVOIDABLE TIMING AND RECOMMENDATIONS

Integrated Silicon Solution, Inc. — www.issi.com Rev. C 08/25/2014

AVOIDABLE TIMING AND RECOMMENDATIONS

Notes:

- 1. PSRAM uses DRAM cell which needs a REFRESH action periodically to retain the information. This REFRESH action is performed internally as part of a READ cycle or when the device is not selected. A hidden REFRESH action has to be executed by the device at least once every 15µs.
- 2. Figure 2a shows a timing example in which consecutive READ cycles occurs in intervals less than the tRC spec while the device is selected for a period of 15µs. This timing should be avoided because output data from these READ cycles are not guaranteed to be valid due to violation of the tRC spec. This timing also prohibits the device from performing a hidden RE-FRESH action properly. Examples on how to avoid the timing in Figure 2a are shown in Figure 2b and 2c.
- 3. Figure 3a shows a timing example in which a single WRITE operation is maintained for a period greater than 15µs. Since a REFRESH action cannot be performed during a WRITE operation, information stored in the device will not be retained if this timing occurs. A WRITE operation is initiated when active LOW signals WE, CS, UB and LB are enabled (logic LOW) but any one of these signals can be disabled (logic HIGH) to complete the WRITE operation. Figure 3b is a timing example of using signal CS being disabled to complete the WRITE operation.
- 4. Since a REFRESH action cannot be performed during a WRITE operation, consecutive WRITE cycles occurring for a total period greater than 15µs are not permitted. However, executing consecutive WRITE cycles greater than 15µs is acceptable if either WE, CS, or both UB and LB, are disabled (logic HIGH) for a period of at least 5ns or higher and can be done once or multiple times. An example using CS signal is shown in Figure 4

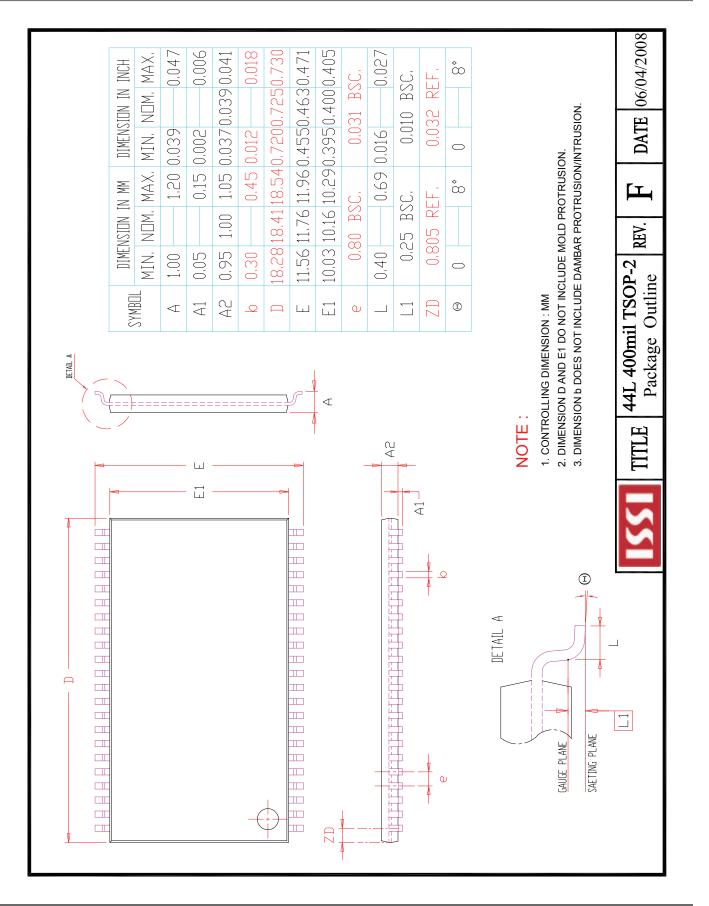
IS66WV51216DALL

Industrial Range: -40°C to +85°C Voltage Range: 1.7V to 1.95V

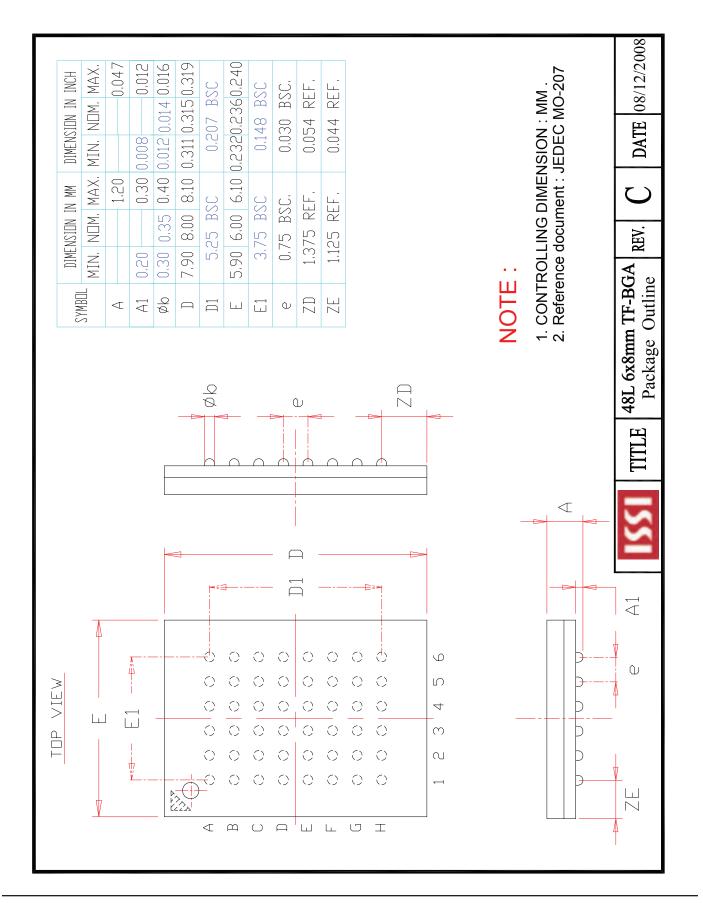
Speed (ns)	Order Part No.	Package	
70	IS66WV51216DALL-70TLI	TSOP-II, Lead-free	
	IS66WV51216DALL-70BLI	mini BGA (6mm x 8mm), Lead-free	

IS66WV51216DBLL

Industrial Range: -40°C to +85°C Voltage Range: 2.5V to 3.6V


Speed (ns)	Order Part No.	Package
55	IS66WV51216DBLL-55TLI T1164A-55TLI IS66WV51216DBLL-55BLI	TSOP-II, Lead-free TSOP-II, Lead-free, SPA 1164A mini BGA (6mm x 8mm), Lead-free
70	IS66WV51216DBLL-70TLI IS66WV51216DBLL-70BLI	TSOP-II, Lead-free mini BGA (6mm x 8mm), Lead-free

IS67WV51216DBLL


Automotive (A1) Range: -40°C to +85°C Voltage Range: 2.5V to 3.6V

Speed (ns)	Order Part No.	Package
55	IS67WV51216DBLL-55TLA1	TSOP-II, Lead-free
	IS67WV51216DBLL-55BLA1	mini BGA (6mm x 8mm), Lead-free
70	IS67WV51216DBLL-70TLA1	TSOP-II, Lead-free
	IS67WV51216DBLL-70BLA1	mini BGA (6mm x 8mm), Lead-free

Integrated Silicon Solution, Inc. — www.issi.com Rev. C 08/25/2014