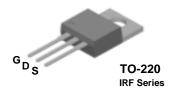
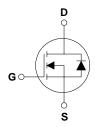


IRF840B/IRFS840B

500V N-Channel MOSFET


General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar, DMOS technology.


This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supplies, power factor correction and electronic lamp ballasts based on half bridge.

Features

- 8.0A, 500V, $R_{DS(on)}$ = 0.8 Ω @V_{GS} = 10 V Low gate charge (typical 41 nC)
- Low Crss (typical 35 pF)
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		IRF840B	IRFS840B	Units
V _{DSS}	Drain-Source Voltage		500		V
I _D	Drain Current - Continuous (T _C = 25°C)		8.0	8.0	Α
	- Continuous (T _C = 100°C)		5.1	5.1	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	32	32	Α
V _{GSS}	Gate-Source Voltage		± 30		V
E _{AS}	Single Pulsed Avalanche Energy (Note		320		mJ
I _{AR}	Avalanche Current	(Note 1)	8.0		Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		13.4		mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		5.5		V/ns
P_{D}	Power Dissipation (T _C = 25°C)		134	44	W
	- Derate above 25°C		1.08	0.35	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
т	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300		°C
T_L					

^{*} Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter	IRF840B	IRFS840B	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case Max.	0.93	2.86	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink Typ.	0.5		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient Max.	62.5	62.5	°C/W

Symbol	Parameter	Test Conditions	i	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA		500			V
ΔBV_{DSS}	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced	to 25°C		0.55		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 500 V, V _{GS} = 0 V				10	μΑ
		V _{DS} = 400 V, T _C = 125°C				100	<u>.</u> μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V				100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V				-100	nA
On Cha	racteristics	1					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		2.0		4.0	V
R _{DS(on)}	Static Drain-Source			2.0		4.0	v
' DS(on)	On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 4.0 \text{ A}$			0.65	8.0	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 4.0 A	(Note 4)		7.3		S
Dynam C _{iss}	ic Characteristics	T.,			1400	1800	n.E
	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz					pF
C _{oss}	Output Capacitance Reverse Transfer Capacitance				145 35	190 45	pF pF
orss	Neverse transfer Capacitance				33	40	рі
Switchi	ng Characteristics						
t _{d(on)}	Turn-On Delay Time	V _{DD} = 250 V, I _D = 8.0 A,			22	55	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$			65	140	ns
t _{d(off)}	Turn-Off Delay Time	- 1.0			125	260	ns
t _f	Turn-Off Fall Time		(Note 4, 5)		75	160	ns
Qg	Total Gate Charge	V _{DS} = 400 V, I _D = 8.0 A,			41	53	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V			6.5		nC
Q _{gd}	Gate-Drain Charge	1	(Note 4, 5)		17	-	nC
	ource Diode Characteristics a		5			0.0	
l _S	Maximum Continuous Drain-Source Diode Forward Current					8.0	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				32	A	
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 8.0 A				1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_S = 8.0 \text{ A},$			390		ns
Q _{rr}	Reverse Recovery Charge	dI _F / dt = 100 A/μs	(Note 4)		4.2		μC

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 9.0mH, I_{AS} = 8.0A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} ≤ 8.0A, di/dt ≤ 200A/µs, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature

Typical Characteristics



Figure 1. On-Region Characteristics

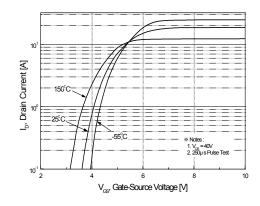


Figure 2. Transfer Characteristics

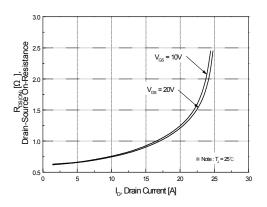


Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

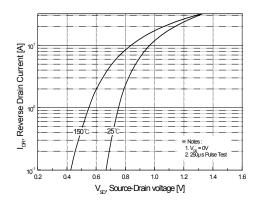


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

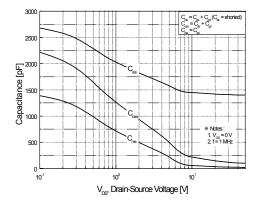


Figure 5. Capacitance Characteristics

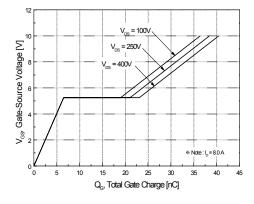


Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

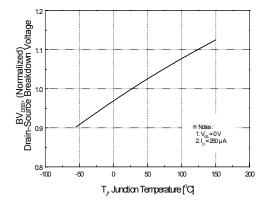


Figure 7. Breakdown Voltage Variation vs Temperature

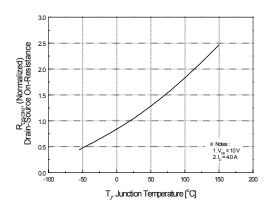


Figure 8. On-Resistance Variation vs Temperature

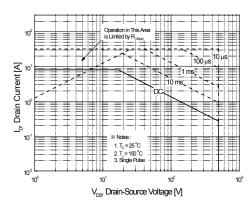


Figure 9-1. Maximum Safe Operating Area for IRF840B

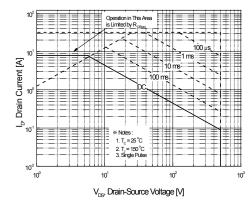


Figure 9-2. Maximum Safe Operating Area for IRFS840B

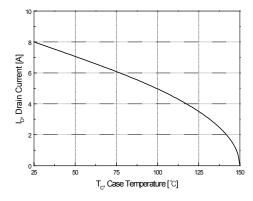


Figure 10. Maximum Drain Current vs Case Temperature

Typical Characteristics (Continued)

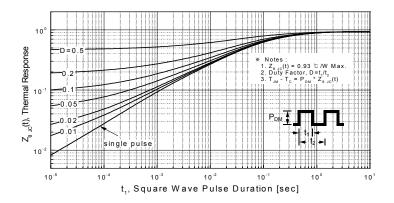


Figure 11-1. Transient Thermal Response Curve for IRF840B

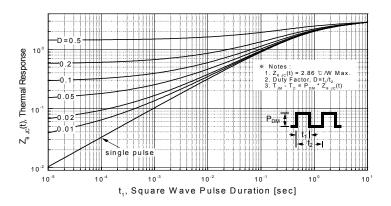
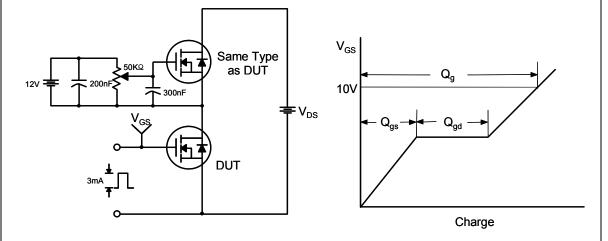
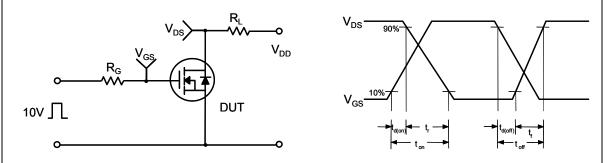
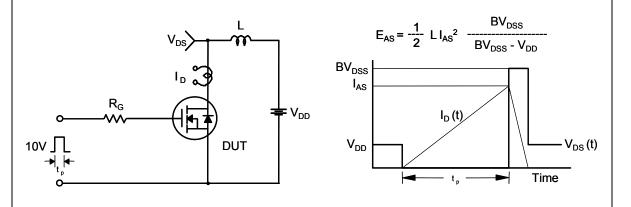
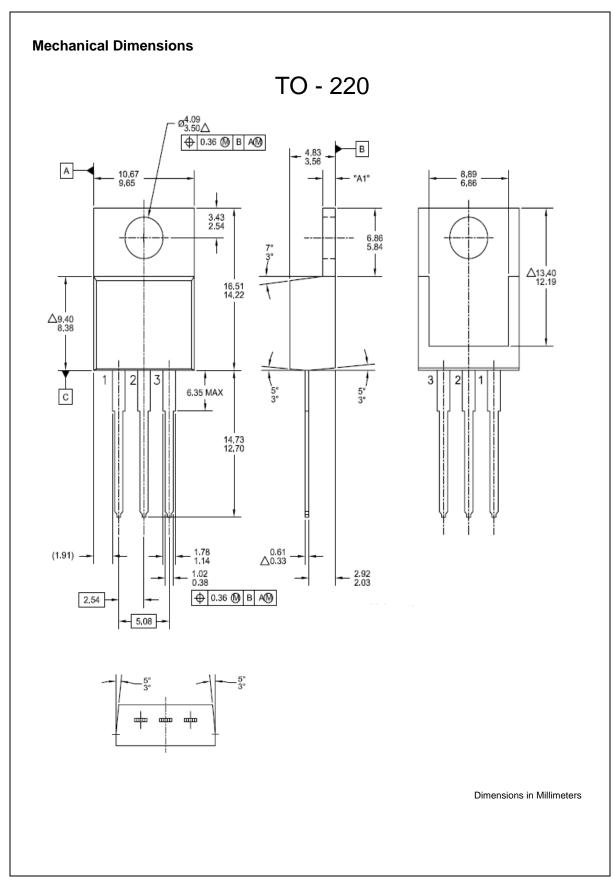
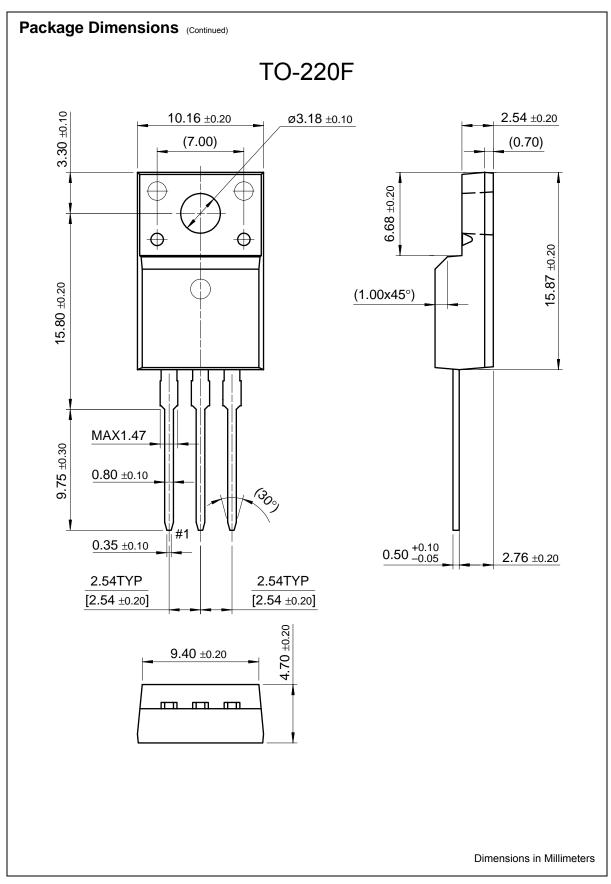




Figure 11-2. Transient Thermal Response Curve for IRFS840B


Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT Driver Same Type as DUT V_{DD} \bullet dv/dt controlled by R_G • I_{SD} controlled by pulse period Gate Pulse Width V_{GS} Gate Pulse Period 10V (Driver) \mathbf{I}_{FM} , Body Diode Forward Current I_{SD} di/dt (DUT) I_{RM} **Body Diode Reverse Current** V_{DS} (DUT) Body Diode Recovery dv/dt **Body Diode** Forward Voltage Drop

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	IntelliMAX™	POP™	SPM™
ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench [®]	SuperSOT™-6
DOME™	GTO™	MicroPak™	QFET [®]	SuperSOT™-8
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™
E ² CMOS™	I ² C™	MSX™	QT Optoelectronics™	TinyLogic [®]
EnSigna™	i-Lo™	MSXPro™	Quiet Series™	TINYOPTO™
FACT™	ImpliedDisconnect™	OCX™	RapidConfigure™	TruTranslation™
FACT Quiet Series™	Л	OCXPro™	RapidConnect™	UHC™
Across the board. Around the world.™		OPTOLOGIC [®]	μSerDes™	UltraFET [®]
The Power Franchise®		OPTOPLANAR™	SILENT SWITCHER®	UniFET™
Programmable Active Droop™		PACMAN™	SMART START™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com