

September 2015

FDN5632N_F085

N-Channel Logic Level PowerTrench[®] MOSFET 60 V, 1.6 A, 98 m Ω

Features

- $R_{DS(on)}$ = 98 m Ω at V_{GS} = 4.5 V, I_{D} = 1.6 A
- \blacksquare R_{DS(on)} = 82 m Ω at V_{GS} = 10 V, I_D = 1.7 A
- Typ $Q_{g(TOT)}$ = 9.2 nC at V_{GS} = 10 V
- Low Miller Charge
- UIS Capability
- Qualified to AEC Q101
- RoHS Compliant

Applications

- DC/DC converter
- Motor Drives

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	60	V
V_{GS}	Gate to Source Voltage	±20	V
ı	Drain Current Continuous (V _{GS} = 10V)	1.7	Α
ID	Pulsed	10	_ A
E _{AS}	Single Pulse Avalanche Energy (Note 1)	74	mJ
P_{D}	Power Dissipation	1.1	W
T _J , T _{STG}	Operating and Storage Temperature	-55 to +150	°C
$R_{\theta JC}$	Thermal Resistance Junction to Case	75	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	111	°C/W

Note

1: E_{AS} of 74mJ is 100% test at L=80mH, I_{AS} =1.4A, starting T_J = 25 ^{o}C

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
5632	FDN5632N_F085	SSOT3	7"	8mm	3000 units

©2015 Fairchild Semiconductor Corporation FDN5632N_F085 Rev. 1.2

www.fairchildsemi.com

Units

Max

Min

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Parameter

Off Ch	Off Characteristics								
B_{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS}$	_S = 0V	60	-	-	V		
ı	Zana Cata Valtana Brain Cumant	V _{DS} = 48V,		-	-	1			
I _{DSS} Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_A = 125^{\circ}C$	-	-	250	μА			
Icee	Gate to Source Leakage Current	$V_{CS} = \pm 20V$		-	-	±100	nA		

Test Conditions

On Characteristics

Symbol

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250\mu A$	1	2.0	3	V
	Drain to Source On Resistance	I _D = 1.7A, V _{GS} = 10V	-	57	82	
r _{DS(on)}		I _D = 1.6A, V _{GS} = 6V	-	62	88	
		I _D = 1.6A, V _{GS} = 4.5V		70	98	$m\Omega$
		I _D = 1.7A, V _{GS} = 10V, T _A = 150°C	-	107	135	

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1MHz f = 1MHz		-	475	-	pF
Coss	Output Capacitance			-	60	-	pF
C _{rss}	Reverse Transfer Capacitance			-	30	-	pF
R_G	Gate Resistance			-	1.4	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0 to 10V)/ = 20)/	-	9.2	12	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = 20V$ $I_{D} = 1.7A$		-	1.5	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	1.4	1	nC

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units

Switching Characteristics

t _{on}	Turn-On Time		-	-	30	ns
t _{d(on)}	Turn-On Delay Time	.,	-	15	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_{D} = 1.0A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$	-	1.7	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10V, R _{GEN} = 012	-	5.2	-	ns
t _f	Fall Time		-	1.3	-	ns
t _{off}	Turn-Off Time		-	-	12.9	ns

Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Voltage	I _{SD} = 1.7A	-	0.8	1.25	\/	
		$I_{SD} = 0.85A$	-	0.8	1.0	v	
t _{rr}	Reverse Recovery Time	-I _{SD} = 1.7A, dI _{SD} /dt = 100A/μs -	-	16.0	21	ns	
Q _{rr}	Reverse Recovery Charge		-	7.9	10.3	nC	

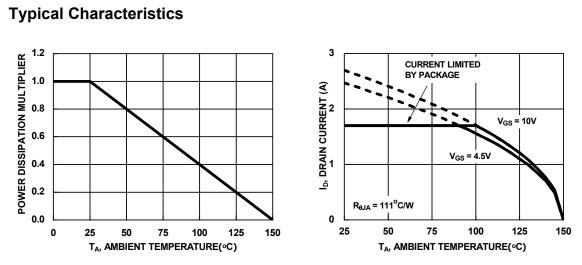


Figure 1. Normalized Power Dissipation vs. Case Temperature

Figure 2. Maximum Continuous Drain Current vs.

Case Temperature

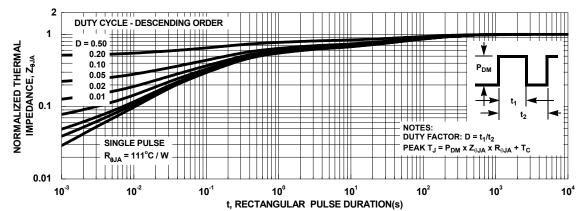


Figure 3. Normalized Maximum Transient Thermal Impedance

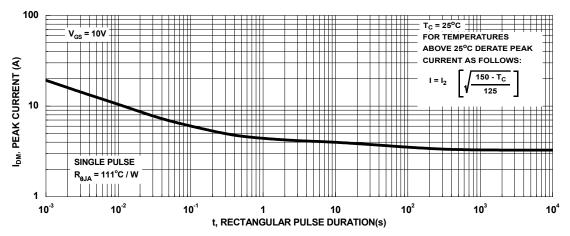


Figure 4. Peak Current Capability

30 ID, DRAIN CURRENT (A) 10 100us 0.1 SINGLE PULSE OPERATION IN THIS AREA MAY BE T_J = MAX RATED T_A = 25°C LIMITED BY rDS(on 0.001 L 0.01

Typical Characteristics

10

100 300

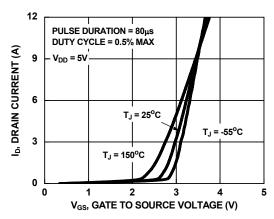


Figure 6. Transfer Characteristics

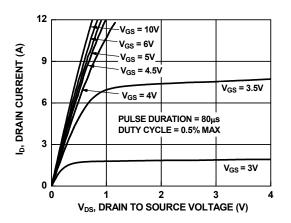


Figure 7. Saturation Characteristics

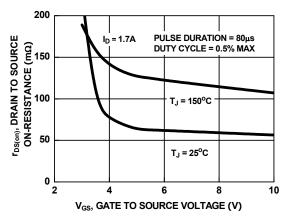


Figure 8. Drain to Source On-Resistance Variation vs Gate to Source Voltage

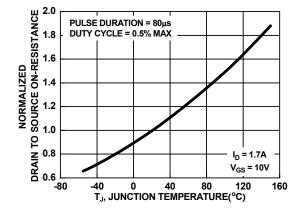


Figure 9. Normalized Drain to Source On Resistance vs Junction Temperature

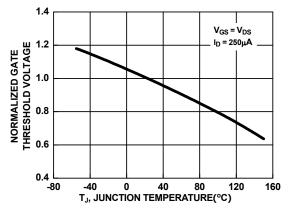


Figure 10. Normalized Gate Threshold Voltage vs Junction Temperature

Typical Characteristics

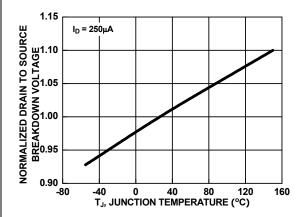


Figure 11. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

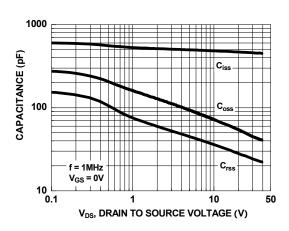


Figure 12. Capacitance vs Drain to Source Voltage

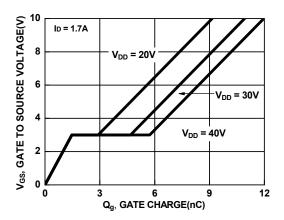
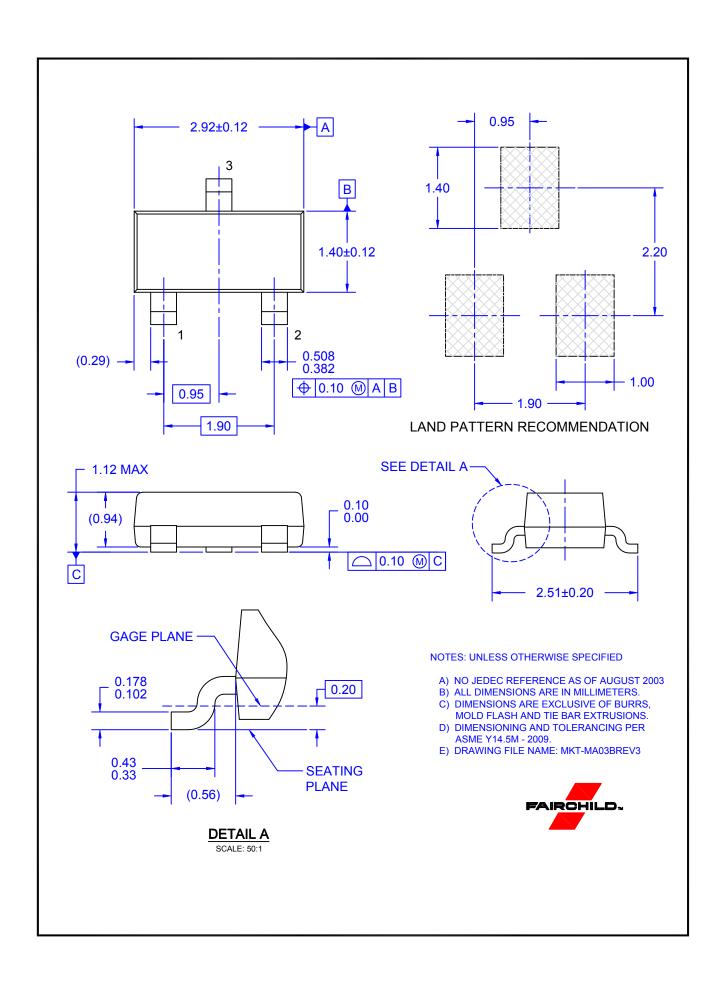



Figure 13. Gate Charge vs Gate to Source Voltage

5

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative