ON Semiconductor® # FDMA1028NZ # **Dual N-Channel PowerTrench® MOSFET** ### **General Description** This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses. The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications. #### **Features** - 3.7 A, 20V. $R_{DS(ON)} = 68 \text{ m}\Omega$ @ $V_{GS} = 4.5V$ $R_{DS(ON)} = 86 \text{ m}\Omega$ @ $V_{GS} = 2.5V$ - Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm - HBM ESD protection level > 2kV (Note 3) - RoHS Compliant - Free from halogenated compounds and antimony oxides Absolute Maximum Ratings T_A=25°C unless otherwise noted | Symbol | Parameter | | Ratings | Units | |-----------------------------------|--|-----------|-------------|-------| | V_{DS} | Drain-Source Voltage | | 20 | V | | V _{GS} | Gate-Source Voltage | | ±12 | V | | I _D | Drain Current - Continuous | (Note 1a) | 3.7 | А | | | – Pulsed | | 6 | | | P _D | Power Dissipation for Single Operation | (Note 1a) | 1.4 | W | | | | (Note 1b) | 0.7 | | | T _J , T _{STG} | Operating and Storage Junction Temperature Range | | -55 to +150 | °C | ### **Thermal Characteristics** | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1a) | 86 (Single Operation) | | |-----------------|---|-----------|------------------------|---------| | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1b) | 173 (Single Operation) | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1c) | 69 (Dual Operation) |] *C/** | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | (Note 1d) | 151 (Dual Operation) | | **Package Marking and Ordering Information** | Device Marking | Device | Reel Size | Tape width | Quantity | |----------------|------------|-----------|------------|------------| | 028 | FDMA1028NZ | 7" | 8mm | 3000 units | ©20F3 Semiconductor Components Industries, LLC. October-2017, Rev. 2 Publication Order Number: FDMA1028NZ/D 1.1 nC | Symbol | Parameter | Test Conditions | Min | Тур | Max | Units | |---|---|--|-----|----------------|----------------|-------| | Off Char | acteristics | , | • | | | • | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$ | 20 | | | V | | <u>ΔBV_{DSS}</u>
ΔΤ _J | Breakdown Voltage Temperature Coefficient | I_D = 250 μ A, Referenced to 25°C | | 15 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | $V_{DS} = 16 \text{ V}, \qquad V_{GS} = 0 \text{ V}$ | | | 1 | μА | | I_{GSS} | Gate-Body Leakage | $V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$ | | | ±10 | μА | | On Chara | acteristics (Note 2) | | | | | | | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}$, $I_D = 250 \mu A$ | 0.6 | 1.0 | 1.5 | V | | $\Delta V_{GS(th)} \over \Delta T_J$ | Gate Threshold Voltage
Temperature Coefficient | I_D = 250 μ A, Referenced to 25°C | | -4 | | mV/°C | | R _{DS(on)} | Static Drain–Source
On–Resistance | $V_{GS} = 4.5 \text{ V}, I_D = 3.7 \text{ A}$
$V_{GS} = 2.5 \text{ V}, I_D = 3.3 \text{ A}$
$V_{GS} = 4.5 \text{ V}, I_D = 3.7 \text{ A}, T_J = 125^{\circ}\text{C}$ | | 37
50
53 | 68
86
90 | mΩ | | g _{FS} | Forward Transconductance | V _{DS} = 10 V, I _D = 3.7 A | | 16 | | S | | Dynamic | Characteristics | | | | | | | C _{iss} | Input Capacitance | $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ | | 340 | | pF | | C _{oss} | Output Capacitance | f = 1.0 MHz | | 80 | | pF | | C _{rss} | Reverse Transfer Capacitance |] | | 60 | | pF | | Rg | Gate Resistance | | | | 25 | Ω | | Switchin | g Characteristics (Note 2) | | | | | | | t _{d(on)} | Turn-On Delay Time | $V_{DD} = 10 \text{ V}, \qquad I_{D} = 1 \text{ A},$ | | 8 | 16 | ns | | t _r | Turn-On Rise Time | $V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$ | | 8 | 16 | ns | | $t_{d(off)}$ | Turn-Off Delay Time |] | | 14 | 26 | ns | | t _f | Turn-Off Fall Time | | | 3 | 6 | ns | | Q_g | Total Gate Charge | $V_{DS} = 10 \text{ V}, \qquad I_{D} = 3.7 \text{ A},$ | | 4 | 6 | nC | | Q _{gs} | Gate-Source Charge | V _{GS} = 4.5 V | | 0.7 | | nC | Q_{gd} Gate-Drain Charge ## Electrical Characteristics T_J = 25 °C unless otherwise noted #### Notes: - 1. $R_{\rm BJA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\rm BJC}$ is guaranteed by design while $R_{\rm BJA}$ is determined by the user's board design. (a) $R_{\theta JA} = 86$ °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation. - (b) $R_{\theta JA}$ = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation. - (c) $R_{\theta JA} = 69$ °C/W when mounted on a 1 in² pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation. - (d) $R_{\theta JA} = 151$ °C/W when mounted on a minimum pad of 2 oz copper. For dual operation. a. 86 °C/W when mounted on a 1 in2 pad of 2 oz copper b. 173 °C/W when mounted on a minimum pad of 2 oz copper c. 69 °C/W when mounted on a 1 in2 pad of 2 oz copper d. 151 °C/W when mounted on a minimum pad of 2 oz copper - 2. Pulse Test: Pulse Width < 300 us, Duty Cycle < 2.0% - 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied. ## **Typical Characteristics** Figure 1. On-Region Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 3. On-Resistance Variation with Temperature. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. Figure 5. Transfer Characteristics. Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. ## **Typical Characteristics** Figure 7. Gate Charge Characteristics. Figure 8. Capacitance Characteristics. Figure 9. Maximum Safe Operating Area. Figure 10. Single Pulse Maximum Power Dissipation. Figure 11. Transient Thermal Response Curve. Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design. ### **Dimensional Outline and Pad Layout** #### NOTES: - A. CONFORM TO JADEC REGISTRATIONS MO-229, VARIATION VCCC, EXCEPT WHERE NOTED. - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009. - D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN. - E. DRAWING FILENAME: MKT-UMLP16Erev4 - F. NON-JEDEC DUAL DAP Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h Phone: 81-3-5817-1050 ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative ♦ © Semiconductor Components Industries, LLC www.onsemi.com