Package	e Mark	ing and Order	ring In	formati	on					
Device N	larking	Device	Pac	kage	Reel Size	Тар	Tape Width		Quantity	
FCH47N6	60_F133	FCH47N60_F133	TO-247		-		-		30	
FCA47	7N60	FCA47N60	TC	-3PN	-		-		30	
FCA47	7N60	FCA47N60_F109	TO	-3PN	-		-		30	
Electric	al Cha	racteristics T _c	= 25°C unles	ss otherwise no	oted					
Symbol		Parameter			Conditions		Min	Тур	Max	Units
Off Charac	teristics									
BV _{DSS}	Drain-Source Breakdown Voltage		$V_{GS} = 0V,$	600			V			
				$V_{GS} = 0V,$	$I_D = 250 \mu A, T_J = 15$	50°C		650		V
ΔBV _{DSS} / ΔT _J	Breakdov Coefficier	vn Voltage Temperatu nt	re	I _D = 250μ.	A, Referenced to 25	°C		0.6		V/°C
BV _{DS}	Drain-So Voltage	urce Avalanche Break	down	$V_{GS} = 0V,$	I _D = 47A			700		V
I _{DSS}	Zero Gat	e Voltage Drain Curre	nt)V, V _{GS} = 0V)V, T _C = 125°C				1 10	μΑ μΑ
I _{GSSF}	Gate-Boo	ly Leakage Current, F	orward	-	/, V _{DS} = 0V				100	nA
I _{GSSR}	Gate-Boo	ly Leakage Current, R	everse	$V_{GS} = -30$	V, $V_{DS} = 0V$				-100	nA
On Charac	teristics						l			
V _{GS(th)}	Gate Thr	eshold Voltage		$V_{DS} = V_{GS}$	_S , I _D = 250μA		3.0		5.0	V
R _{DS(on)}	Static Dra On-Resis	ain-Source stance		V _{GS} = 10 ¹	/, I _D = 23.5A			0.058	0.07	Ω
9 _{FS}	Forward	Transconductance		V _{DS} = 40\	/, I _D = 23.5A	(Note 4)		40		S
Dynamic C	haracteris	stics		1				1		
C _{iss}	Input Cap	pacitance		V _{DS} = 25\	/, V _{GS} = 0V,			5900	8000	pF
C _{oss}	Output C	apacitance		f = 1.0MH	Z			3200	4200	pF
C _{rss}	Reverse	Transfer Capacitance						250		pF
C _{oss}	Output C	apacitance		$V_{DS} = 480$	$V, V_{GS} = 0V, f = 1.0$	MHz		160		pF
C _{oss} eff.	Effective	Output Capacitance		$V_{DS} = 0V$	to 400V, $V_{GS} = 0V$			420		pF
Switching	Character	istics							•	
t _{d(on)}	Turn-On	Delay Time)V, I _D = 47A			185	430	ns
t _r	Turn-On	Rise Time		$R_G = 25\Omega$				210	450	ns
t _{d(off)}	Turn-Off	Delay Time						520	1100	ns
t _f	Turn-Off	Fall Time				(Note 4, 5)		75	160	ns
Qg	Total Gat	e Charge)V, I _D = 47A			210	270	nC
Q _{gs}	Gate-Sou	Irce Charge		$V_{GS} = 10^{10}$	/			38		nC
Q _{gd}	Gate-Dra	in Charge]		(Note 4, 5)		110		nC
Drain-Sour	ce Diode	Characteristics and	Maximum	Ratings			1	1	I	1
I _S	Maximum	n Continuous Drain-So	ource Dioc	le Forward	Current				47	А
I _{SM}		n Pulsed Drain-Source							141	А
V _{SD}	Drain-So	urce Diode Forward V	oltage	$V_{GS} = 0V,$	I _S = 47A				1.4	V
t _{rr}		Recovery Time	J	$V_{GS} = 0V,$	-			590		ns
Q _{rr}		Recovery Charge		$dI_F/dt = 10$	•	(Note 4)		25		μC

NOTES:

Downloaded from Arrow.com.

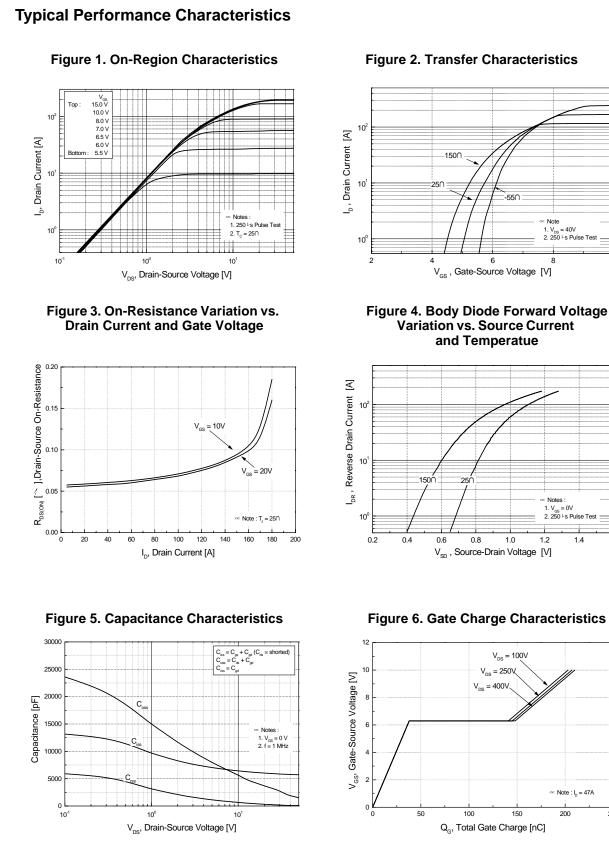
1. Repetitive Rating: Pulse width limited by maximum junction temperature

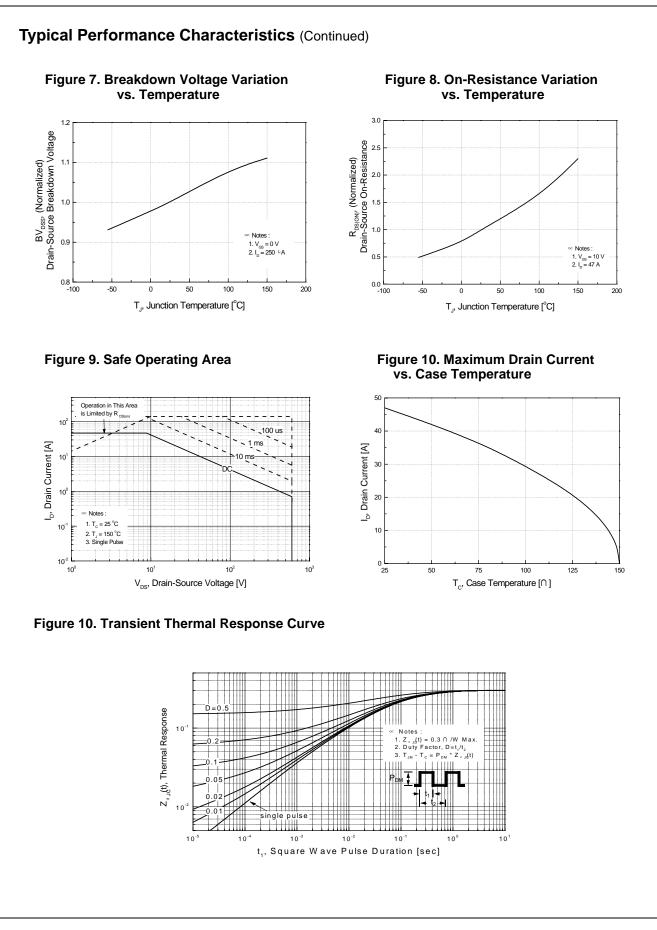
2. I_{AS} = 18A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25 $^{\circ}C$

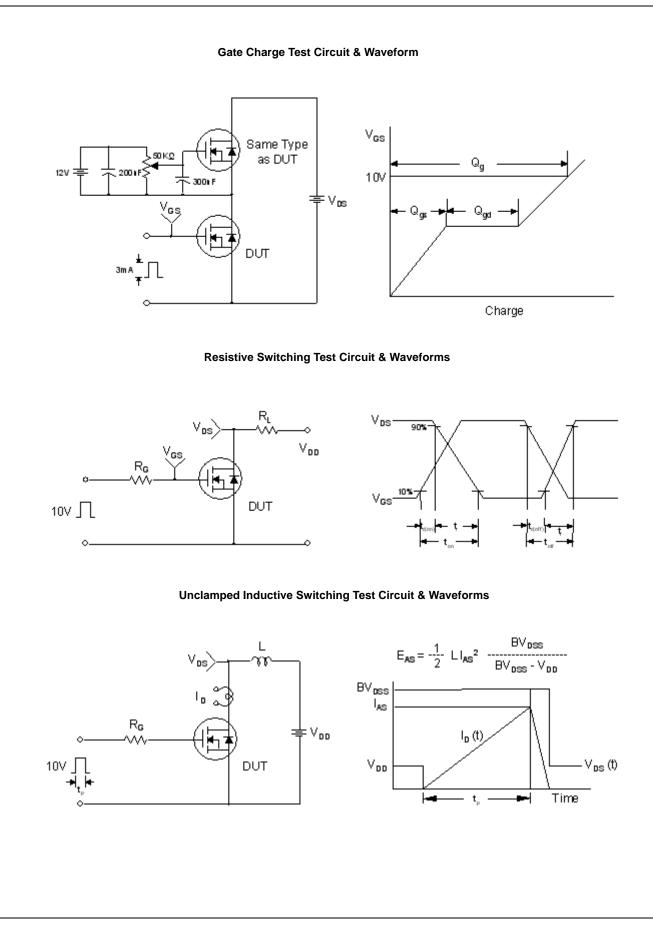
3. $I_{SD} \leq 47A, \, di/dt \leq 200A/\mu s, \, V_{DD} \leq BV_{DSS}, \, Starting \, T_J$ = $25^{\circ}C$

FCH47N60_F133 / FCA47N60 / FCA47N60_F109 Rev. B3

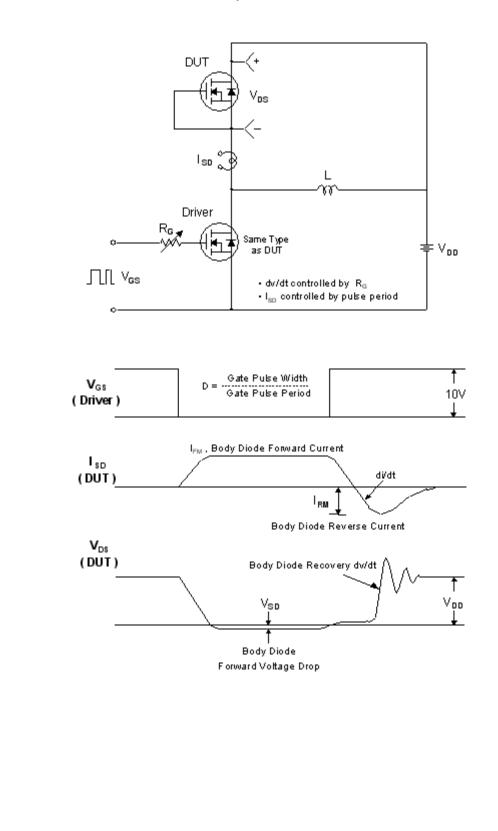
4. Pulse Test: Pulse width \leq 300 $\mu s,$ Duty Cycle \leq 2%

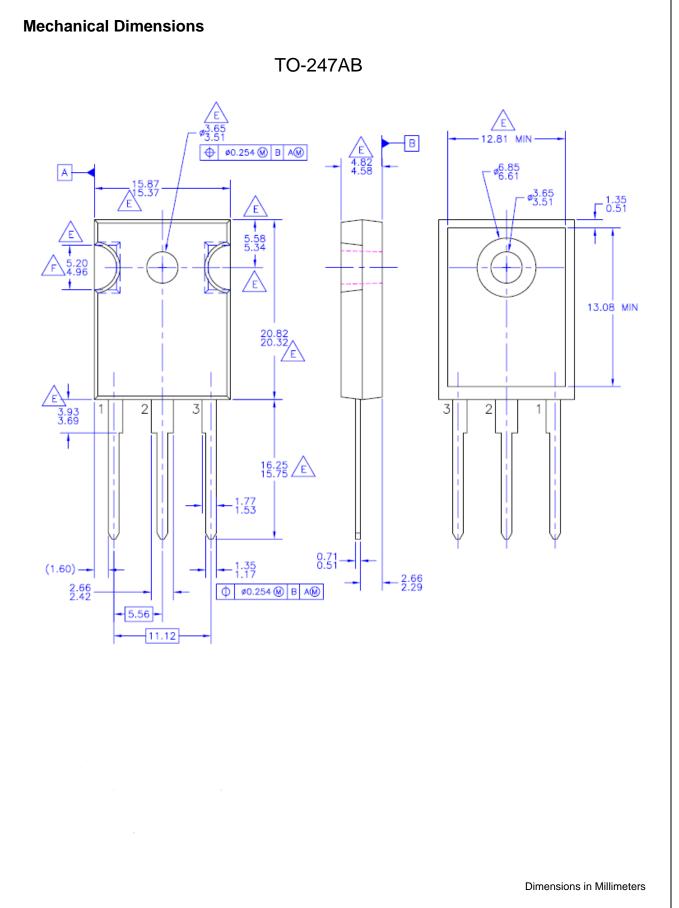

5. Essentially Independent of Operating Temperature Typical Characteristics

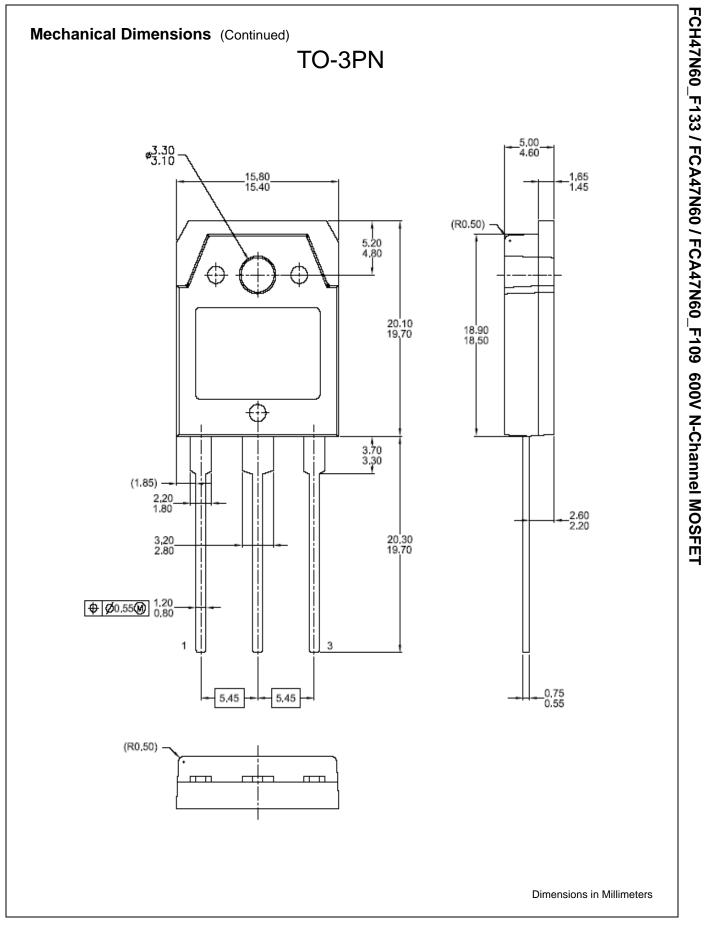

10

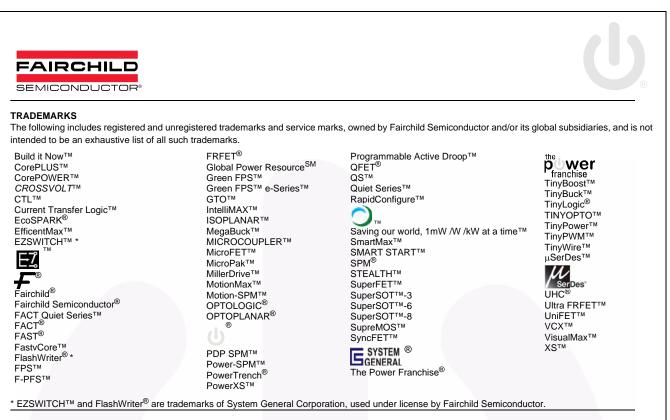

1.4

1.6




250





Peak Diode Recovery dv/dt Test Circuit & Waveforms

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EARCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

~ ~	Definition	Product Status	Datasheet Identification
t. Specifications	Datasheet contains the design specifications for product development. Spe may change in any manner without notice.	Formative / In Design	Advance Information
shed at a later any time without	Datasheet contains preliminary data; supplementary data will be published date. Fairchild Semiconductor reserves the right to make changes at any ti notice to improve design.	First Production	Preliminary
rves the right to	Datasheet contains final specifications. Fairchild Semiconductor reserves t make changes at any time without notice to improve the design.	Full Production	No Identification Needed
/ Fairchild	Datasheet contains specifications on a product that is discontinued by Fair Semiconductor. The datasheet is for reference information only.	Not In Production	Obsolete
•	Datasheet contains specifications on a product that is discontinued by Semiconductor. The datasheet is for reference information only.	Not In Production	Obsolete