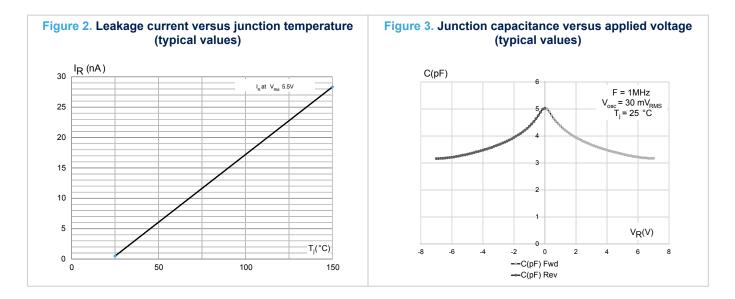
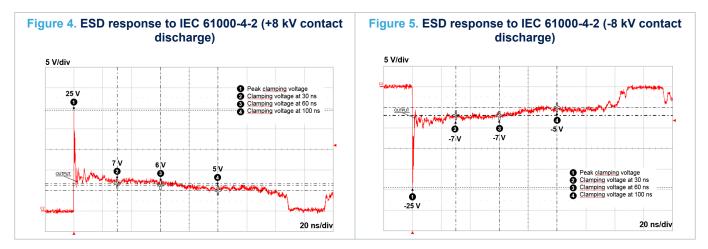
Characteristics 1

Symbol	Parar	Value	Unit	
		IEC 61000-4-2:		
V _{PP}	Peak pulse voltage	Contact discharge	15	kV
		Air discharge	25	
I _{PP}	Peak pulse current	8/20us	5	А
P _{PP}	Peak pulse power	- ο/20μ5	45	W
T _{stg}	Storage junction temperature range		-65 to +150	°C
Tj	Maximum operating junction temperature		-40 to +150	
TL	Maximum temperature for soldering during 10 s		260	°C

Table 1. Absolute maximum ratings

Figure 1. Electrical characteristics (definitions)

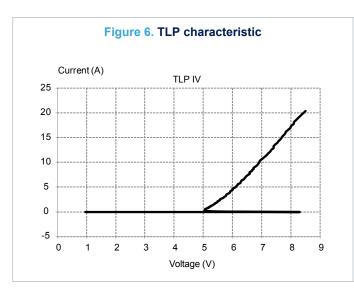
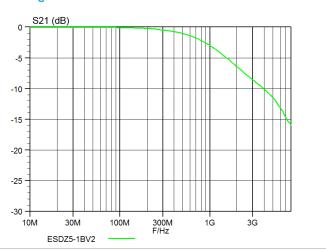

Symbol V _{RM}	Parameter Stand-off voltage		R _D	
V _{CL}	Clamping voltage		/	
V _H	Holding voltage	V _{CL} V _{Trig} V _{BR} V _{RM}		v
IRM	Leakage current at V_{RM}			→
IPP	Peak pulse current		rtwi	
V _{Trig}	Triggering voltage			
C _{line}	Input capacitance per line	\ /	I _R	
R _D	Dynamic resistance	/	I _{PP}	

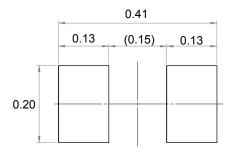

Table 2. Electrical characteristics (T_{amb} = 25 °C)

Symbol	Test conditions	Min.	Тур.	Max.	Unit
V _{Trig}	Higher voltage than $V_{\mbox{TRIG}}$ guarantees the protection turn-on	5.8		8.5	V
I _{RM}	V _{RM} = 5.5 V ⁽¹⁾			100	nA
R _D	Pulse duration 100 ns		0.18		Ω
V _{CL}	8 kV contact discharge after 30 ns, IEC 61000-4-2		7		V
C _{line}	$F = 1 MHz, V_{OSC} = 30 mV$		5	6	pF
V _H	Lower voltage than V_H guarantees the protection turn-off	4	4.3	4.8	V

1. Application note: When used to protect a line connected to a DC source, the DC voltage must be lower than the minimum V_H to enable the diode to return to its non-conducting state after the transient.

1.1 Characteristics (curves)

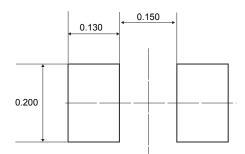




Figure 7. S21 attenuation measurement result

2 Recommendation on PCB assembly

2.1 Footprint

Figure 8. Footprint in mm


1. SMD footprint design is recommended

2.2 Stencil opening design

1. Recommended design reference

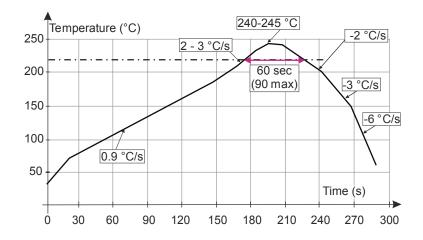
- a. Stencil opening thickness: 75 µm.
- b. Stencil aperture ratio: 100%

Figure 9. Stencil opening dimensions

2.3 Solder paste

- 1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
- 2. "No clean" solder paste is recommended.
- 3. Offers a high tack force to resist component movement during high speed.
- 4. Use solder paste with fine particles: Type 4 (powder particle size 20-38 µm per IPCJ STD-005).

2.4 Placement

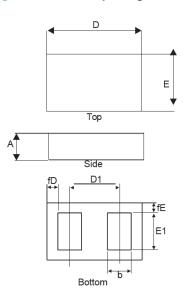

- 1. Manual positioning is not recommended.
- 2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering
- 3. Standard tolerance of ±0.05 mm is recommended.
- 4. 1.0 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
- 5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
- For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

2.5 PCB design preference

- 1. To control the solder paste amount, the closed via is recommended instead of open vias.
- 2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

2.6 Reflow profile

Figure 10. ST ECOPACK[®] recommended soldering reflow profile for PCB mounting



Note: Minimize air convection currents in the reflow oven to avoid component movement. Maximum soldering profile corresponds to the latest IPC/JEDEC J-STD-020.

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

3.1 ST01005 package information

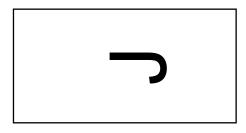
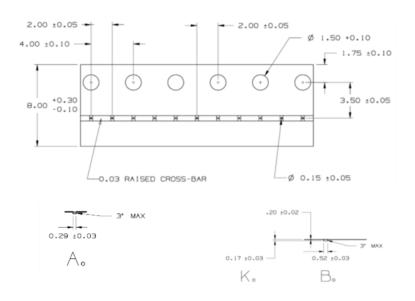
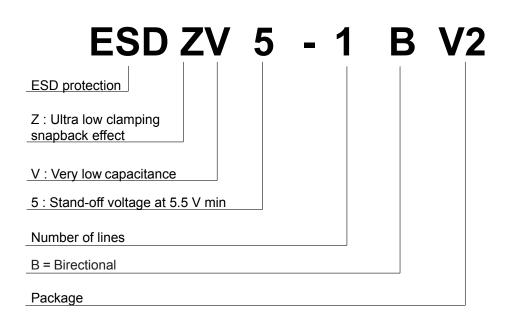


Figure 11. ST01005 package outline


Table 3. ST01005 package mechanical data

	Dimensions				
Ref.	Millimeters				
	Min.	Тур.	Max.		
А	0.130	0.150	0.180		
b		0.130			
D	0.440	0.455	0.470		
D1		0.280			
E	0.230	0.245	0.260		
E1		0.200			
fD		0.0225			
fE		0.0225			

Figure 12. Marking layout


Figure 13. Tape and reel mechanical data

4 Ordering information

57

Figure 14. Ordering information scheme

Table 4. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
ESDZV5-1BV2 J		ST01005	0.041 mg	20000	Tape and reel

1. The marking can be rotated by multiples of 90° to differentiate assembly location

Revision history

Date	Revision	Changes
16-Nov-2017	1	Initial release.
27-Feb-2018	2	Updated Section Features and Table 1. Absolute maximum ratings.
06-Nov-2018	3	Updated Section 2.1 Footprint and Table 3. ST01005 package mechanical data.
08-Dec-2020	4	Updated Figure 13. Marking layout.

Table 5. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved