

Electrical Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Tvp	Max	Unit	Test Condition
Off Characteristics			- 71-			
Collector-Base Breakdown Voltage	V _{(BR)CBO}	20			V	$I_{\rm C} = 100 \mu A, I_{\rm E} = 0$
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	20			V	$I_{\rm C} = 10 {\rm mA}, I_{\rm B} = 0$
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	5	_	_	V	$I_{E} = 100 \mu A, I_{C} = 0$
Collector Cutoff Current	I _{CBO}			100	nA	$V_{CB} = 16V, I_E = 0$
Emitter Cutoff Current	I _{EBO}			100	nA	$V_{EB} = 4V, I_{C} = 0$
On Characteristics (Note 4)						·
Collector-Emitter Saturation Voltage		_	0.04	0.10		$I_{C} = 0.1A, I_{B} = 0.5mA$
	V _{CE(SAT)}		0.18	0.50	V	$I_{C} = 2A, I_{B} = 10mA$
		_	0.24	0.45		$I_{C} = 3A, I_{B} = 20mA$
Base-Emitter Saturation Voltage	V _{BE(SAT)}	_	_	0.9	V	$I_{\rm C} = 1$ A, $I_{\rm B} = 10$ mA
Base-Emitter Turn-On Voltage	V _{BE(ON)}	_	_	0.9	V	$V_{CE} = 2V, I_C = 1A$
DC Current Gain		500	_	_		$V_{CE} = 2V, I_C = 0.1A$
	h _{FE}	400	_			$V_{CE} = 2V, I_C = 2A$
		150	—	—		$V_{CE} = 2V, I_C = 6A$
AC Characteristics	÷					
Transition Frequency	f _T	150			MHz	$V_{CE} = 5V, I_{C} = 50mA, f = 50MHz$
Input Capacitance	Cibo	_	230	_	pF	V _{EB} = 0.5V, f = 1MHz
Output Capacitance	Cobo	_	23		pF	$V_{CB} = 10V$, f = 1MHz
Switching Times	t _{on}		26		ns	$V_{CC} = 10V, I_{C} = 500mA$
	toff	—	220		ns	$I_{B1} = -I_{B2} = 50 \text{mA}$

Notes: 4. Pulse Test: Pulse width \leq 300 μ s. Duty cycle \leq 2.0%.

2,000 0.5 200 V_{CE(SAT)}, COLLECTOR-EMITTER SATURATION VOLTAGE (V) 0.4 1,500 h_{FE}, DC CURRENT GAIN 150°d 0.3 т_А = 85°С 1,000 $T_A = 25^{\circ}C$ 0.2 T_A 85 500 $T_A = -55^{\circ}C$ 0.1 25°C = -55°C 0 0 0.001 0.001 0.01 0.1 0.01 0.1 10 10 1 I_C, COLLECTOR CURRENT (A) Fig. 4 Typical Collector-Emitter Saturation Voltage I_C, COLLECTOR CURRENT (A) Fig. 3 Typical DC Current Gain vs. Collector Current vs. Collector Current 1.2 1.2 V_{BE(SAT)}, BASE-EMITTER SATURATION VOLTAGE (V) V_{BE(ON)}, BASE-EMITTER TURN-ON VOLTAGE (V) 200 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 = 85°C TA 0.2 0.2 T 50 0 0 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10 I_C, COLLECTOR CURRENT (A) I_C, COLLECTOR CURRENT (A) Fig. 6 Typical Base-Emitter Saturation Voltage Fig. 5 Typical Base-Emitter Turn-On Voltage vs. Collector Current vs. Collector Current

Ordering Information (Note 5)

Device	Packaging	Shipping
DNLS320E-13	SOT-223	2500/Tape & Reel

Notes: 5. For packaging details, go to our website at http://www.diodes.com/ap2007.pdf.

Marking Information

Downloaded from Arrow.com.

Package Outline Dimensions

Suggested Pad Layout:

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.