

High-Performance, 16-Bit Digital-to-Analog Converters

FUNCTIONAL SPECIFICATIONS

(Typical at +25°C and ±15V supplies unless otherwise noted.)

DESCRIPTION			
INPUTS			
Resolution	16 bits		
Coding, Unipolar Output	Complementary binary		
Coding, Bipolar Output	Complementary offset binary		
Input Logic Level, Bit ON ("0") ①	0V to +0.8V at -1mA		
Input Logic Level, Bit OFF ("1") ①	+2.4V to +5.5V at +40 A		
Logic Loading	1 TTL load		
PERFORMANCE ②			
Nonlinearity Error, max.	±0.0045% of FSR		
Monotonicity, +10°C to +40°C	14 bits		
Gain Error, Before Trimming	±0.1%		
Zero Error, Before Trimming	±0.15% of FSR		
Gain Tempco, max. ③	±15ppm/°C of FSR		
Gain Tempco, max. BGC	±20ppm/°C of FSR		
Zero Tempco, Unipolar, max.	±5ppm/°C of FSR		
Offset Tempco, Bipolar, max.	±8ppm/°C of FSR		
Differential Nonlinearity Tempco, max.	±2ppm/°C of FSR		
Settling Time, 10V Change 4	15 μs		
Slew Rate	±20V/s		
Power Supply Rejection	±0.003%FSR/% ⑤		
OUTPUTS			
Output Voltage Range, Unipolar ®	0 to +10V		
Output Voltage Range, Bipolar	±5V		
Output Voltage Range, "-1" Suffix	±10V		
Output Current, min. ⑦	±5mA		
Output Impedance	0.05		
POWER REQUIREMENTS			
Quiescent, All Bits High	+15V, ±0.5V at 20mA		
	-15V, ±0.5V at 25mA		
	±12V operation ®		
PHYSICAL/ENVIRONMENTAL			
Operating Temperature Range, Case	0°C to +70°C (BMC, BGC, BMC-C, BGC-C)		
	-40°C to +100°C (BME, BGE, BME-C, BGE-C)		
	-55°C to +125°C (BMM, 883, BMM-C, -C/883)		
Storage Temperature Range	−65°C to +150°C		
Package Type	24-pin DDIP		
Weight	0.22 ounces (6.3 grams)		

Footnotes:

- ① Drive from TTL output with only the DAC-HP as load.
- $\ \ \,$ FSR is full-scale range and is 10V for 0 to +10V or –5V to +5V outputs, 20V for ±10V output, etc.
- ③ For all models except DAC-HP16BGC.
- Settling to ±0.5mV.
- $\pm 0.006\% FSR/\%$ maximum over full military temperature range for MM and 883 models.
- ® Unipolar output range for suffix "-1" models, 0 to +10V, is reached at the 1/2 scale point.
- ⑦ Pin 17.
- ® For ±12V operation, consult factory.

ABSOLUTE MAXIMUM RATINGS					
PARAMETERS	LIMITS	UNITS			
Positive Supply, Pin 23	+18	Volts			
Negative Supply, Pin 19	-18	Volts			
Digital Input Voltage, Pins 1–16	+5.5	Volts			
Output Current, Pin 17	±20	mA			
Lead Temperature (soldering, 10s)	300	°C			

TECHNICAL NOTES

- It is recommended that these converters be operated with local supply bypass capacitors of 1mF (tantalum type) at the +15V and -15V supply pins. The capacitors should be connected as close to the pins as possible. In highfrequency noise environments, an additional 0.01mF ceramic capacitor should be used in parallel with each tantalum bypass.
- 2. When laying out the circuit board for this device, isolate the analog, digital and power grounds as much as possible from each other before joining them at pin 20.
- 3. If the reference output (pin 24) is used, it must be buffered by an operational amplifier in the noninverting mode. See Figure 2. Current drawn from pin 24 should be limited to ±10mA in order that the temperature coefficient of the reference circuit not be affected. This is sufficient current for the bias current requirements of most popular operational amplifier types.

CALIBRATION PROCEDURE

For bipolar operation, connect Bipolar Offset (pin 18) to Summing Junction (pin 21). For unipolar operation, connect Bipolar Offset (pin 18) to Ground (pin 20). In making the following adjustments, refer to the Coding Tables and Connection Diagrams.

- Zero Adjustment. Set the input digital code to 1111 1111 1111 1111 and adjust the ZERO ADJ. potentiometer to give 0.00000V output for unipolar operation or –FS output for bipolar operation.
- Gain Adjustment. Set the input digital code to 0000 0000 0000 0000 0000 and adjust the GAIN ADJ. potentiometer to give +FS – 1LSB output for either unipolar or bipolar operation.

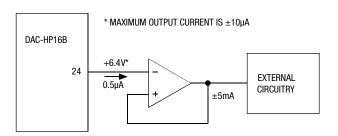


Figure 2. Use of Reference Output

High-Performance, 16-Bit Digital-to-Analog Converters

CODING TABLES

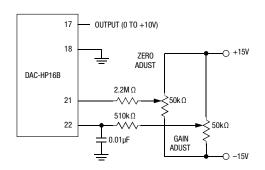

INPUT CODE			SCALE	OUTPUT VOLTAGE	OUTPUT VOLTAGE	
MSB			LSB	SUALE	OUTFUT VOLIAGE	SUFFIX "-1"
0000	0000	0000	0000	+FS – 1LSB	+4.99985V	+9.99969V
0011	1111	1111	1111	+1/2FS	+2.50000	+5.00000
0111	1111	1111	1111	0	0.00000	0.00000
1011	1111	1111	1111	-1/2FS	-2.50000	-5.00000
1111	1111	1111	1110	–FS + 1LSB	-4.99985	-9.99969
1111	1111	1111	1111	–FS	-5.00000V	-10.00000V

Table 1. Bipolar Output — Complementary Offset Binary

INPUT CODE			COALE	OUTDUT VOLTACE		
MSB			LSB	SCALE	OUTPUT VOLTAGE	
0000	0000	0000	0000	+FS – 1LSB	+9.99985V	
0011	1111	1111	1111	+3/4FS	+7.50000	
0111	1111	1111	1111	+1/2FS	+5.00000	
1011	1111	1111	1111	+1/4FS	+2.50000	
1111	1111	1111	1110	+1LSB	+153μV	
1111	1111	1111	1111	0	0	

Table 2. Unipolar Output — Complementary Binary

CONNECTION DIAGRAMS

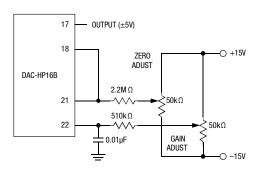


Figure 4. Bipolar Operations

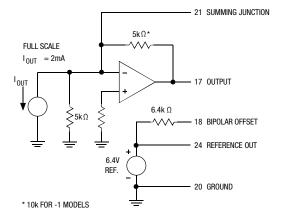
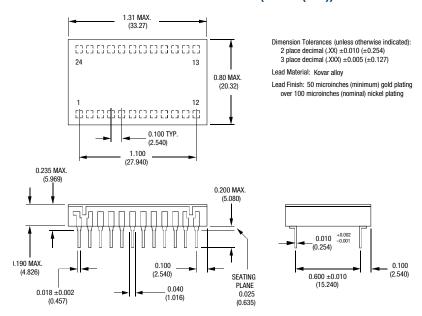


Figure 5. Output Circuit


DATEL is a registered trademark of Murata Power Solutions • 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

DAC-HP Series

High-Performance, 16-Bit Digital-to-Analog Converters

MECHANICAL DIMENSIONS (inches (mm))

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP RANGE	BITS	SEAL	RoHS
DAC-HP16BGC	0 to +70°C	16	Epoxy	No
DAC-HP16BGC-C	0 to +70°C	16	Ероху	Yes
DAC-HP16BMC	0 to +70°C	16	Hermetic	No
DAC-HP16BMC-C	0 to +70°C	16	Hermetic	Yes
DAC-HP16BME	-40 to +100°C	16	Hermetic	No
DAC-HP16BME-C	-40 to +100°C	16	Hermetic	Yes
DAC-HP16BMM	−55 to +125°C	16	Hermetic	No
DAC-HP16BMM-C	−55 to +125°C	16	Hermetic	Yes
DAC-HP16BMM-QL	−55 to +125°C	16	Hermetic	No
DAC-HP16BMM-QL-C	−55 to +125°C	16	Hermetic	Yes
DAC-HPB/883	−55 to +125°C	16	Hermetic	No
DAC-HPB/883-C	−55 to +125°C	16	Hermetic	Yes
DAC-HP16BGC-1	0 to +70°C	16	Ероху	No
DAC-HP16BGC-1-C	0 to +70°C	16	Ероху	Yes
DAC-HP16BMC-1	0 to +70°C	16	Hermetic	No
DAC-HP16BMC-1-C	0 to +70°C	16	Hermetic	Yes
DAC-HP16BME-1	-40 to +125°C	16	Hermetic	No
DAC-HP16BME-1-C	-40 to +125°C	16	Hermetic	Yes
DAC-HP16BMM-1	−55 to +125°C	16	Hermetic	No
DAC-HP16BMM-1-C	−55 to +125°C	16	Hermetic	Yes
DAC-HP16BMM-1-QL	−55 to +125°C	16	Hermetic	No
DAC-HP16BMM-1-QL-C	−55 to +125°C	16	Hermetic	Yes
DAC-HPB-1/883	−55 to +125°C	16	Hermetic	No
DAC-HPB-1/883-C	−55 to +125°C	16	Hermetic	Yes
5962-8953101HXC	−55 to +125°C	16	Hermetic	No
5962-8953102HXC	−55 to +125°C	16	Hermetic	No
5962-8953101HXA	−55 to +125°C	16	Hermetic	No
5962-8953102HXA	−55 to +125°C	16	Hermetic	No

The MIL-STD-883 units are available under DESC

Drawing Number 5962-89528. Contact DATEL for 883 product specifications.

DATEL is a registered trademark of Murata Power Solutions, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA ITAR and ISO 9001/14001 REGISTERED

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

© 2013 Murata Power Solutions, In

www.datel.com • e-mail: help@datel.com