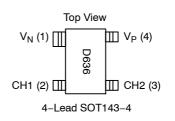
Table 1. PIN DESCRIPTIONS

2-Channel, 4-Lead SOT143-4 Package (CM1293A-02SR)


			• • • •
Pin	Name	Туре	Description
1	V _N	GND	Negative Voltage Supply Rail
2	CH1	I/O	ESD Channel
3	CH2	I/O	ESD Channel
4	VP	PWR	Positive Voltage Supply Rail

	2-Channel, SC-74 Package (CM1293A-02SO)					
Pin	Name	Туре	Description			
1	NC	-	No Connect			
2	VN	GND	Negative Voltage Supply Rail			
3	CH1	I/O	ESD Channel			
4	CH2	I/O	ESD Channel			
5	NC	-	No Connect			
6	VP	PWR	Positive Voltage Supply Rail			

	4–Channel, SC–74 Package (CM1293A–04SO)					
Pin	Name	Туре	Description			
1	CH1	I/O	ESD Channel			
2	V _N	GND	Negative Voltage Supply Rail			
3	CH2	I/O	ESD Channel			
4	СНЗ	I/O	ESD Channel			
5	V _P	PWR	Positive Voltage Supply Rail			
6	CH4	I/O	ESD Channel			

4-C	4-Channel, 10-Lead MSOP-10 Package (CM1293A-04MR)					
Pin	Name	Туре	Description			
1	CH1	I/O	ESD Channel			
2	NC	-	No Connect			
3	VP	PWR	Positive Voltage Supply Rail			
4	CH2	I/O	ESD Channel			
5	NC	-	No Connect			
6	СНЗ	I/O	ESD Channel			
7	NC	-	No Connect			
8	V _N	GND	Negative Voltage Supply Rail			
9	CH4	I/O	ESD Channel			
10	NC	-	No Connect			

PACKAGE / PINOUT DIAGRAM

Top View						
NC (1) 🎞		III VP (6)				
VN (2) [[[633	III NC (5)				
CH1 (3) [[] CH2 (4)						
2-Channel SC-74						

Top View						
СН1		П СН4				
V _N ⊞	635	III V _P				
СН2 🖽		🔟 снз				
4–Channel SC–74						

Top View						
	D641	NC CH4 V _N NC CH3				

10-Lead MSOP-10

SPECIFICATIONS

Table 2. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Operating Supply Voltage (V _P - V _N)	6.0	V
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	65 to +150	°C
DC Voltage at any Channel Input	(V _N – 0.5) to (V _P + 0.5)	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 3. STANDARD OPERATING CONDITIONS

Parameter	Rating	Units
Operating Temperature Range	-40 to +85	°C
Package Power Rating SOT143-4 Package (CM1293A-02SR) SC-74 Package (CM1293A-02SO, CM1293A-04SO) MSOP-10 Package (CM1293A-04MR)	225 225 400	mW

Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note 1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VP	Operating Supply Voltage (V _P -V _N)			3.3	5.5	V
Ι _Ρ	Operating Supply Current	(V _P -V _N) = 3.3 V			8.0	μΑ
V _F	Diode Forward Voltage Top Diode Bottom Diode	$I_F = 8 \text{ mA}, T_A = 25^{\circ}\text{C}$	0.60 0.60	0.80 0.80	0.95 0.95	V
I _{LEAK}	Channel Leakage Current	$T_A = 25^{\circ}C, V_P = 5 V, V_N = 0 V$		±0.1	±1.0	μA
C _{IN}	Channel Input Capacitance	At 1 MHz, V_P = 3.3 V, V_N = 0 V, V_{IN} = 1.65 V			2.0	pF
ΔCIO	Channel I/O to I/O Capacitance			1.5		pF
V _{ESD}	ESD Protection – Peak Discharge Voltage at any Channel Input, in System Contact Discharge per IEC 61000–4–2 Standard Human Body Model, MIL–STD–883, Method 3015	$T_A = 25^{\circ}C$ (Notes 2 and 4) $T_A = 25^{\circ}C$ (Notes 3 and 4)	±8 ±15			kV
V _{CL}	Channel Clamp Voltage Positive Transients Negative Transients	$T_A = 25^{\circ}C, I_{PP} = 1A, t_P = 8/20 \ \mu S$ (Note 4)		+9.9 -1.6		V
R _{DYN}	Dynamic Resistance Positive Transients Negative Transients	$T_A = 25^{\circ}C, I_{PP} = 1A, t_P = 8/20 \ \mu S$ (Note 4)		0.96 0.5		Ω

1. All parameters specified at $T_A = -40^{\circ}C$ to $+85^{\circ}C$ unless otherwise noted. 2. Standard IEC 61000-4-2 with $C_{Discharge} = 150 \text{ pF}$, $R_{Discharge} = 330 \Omega$, $V_P = 3.3 \text{ V}$, V_N grounded. 3. Human Body Model per MIL-STD-883, Method 3015, $C_{Discharge} = 100 \text{ pF}$, $R_{Discharge} = 1.5 \text{ k}\Omega$, $V_P = 3.3 \text{ V}$, V_N grounded. 4. These measurements performed with no external capacitor on V_P .

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VP	Operating Supply Voltage (V _P -V _N)			3.3	5.5	V
I _P	Operating Supply Current	(V _P -V _N) = 3.3 V			8.0	μΑ
V _F	Diode Forward Voltage	$I_F = 8 \text{ mA}, T_A = 25^{\circ}\text{C}$		0.90		V
I _{LEAK}	Channel Leakage Current	$T_A = 25^{\circ}C, V_P = 5 V, V_N = 0 V$		±0.1	±1.0	μΑ
C _{IN}	Channel Input Capacitance	At 1 MHz, V_P = 3.3 V, V_N = 0 V, V_{IN} = 1.65 V			2.0	pF
ΔCIO	Channel I/O to I/O Capacitance			1.5		pF
V _{ESD}	ESD Protection Peak Discharge Voltage at any Channel Input, in System Contact Discharge per IEC 61000-4-2 Standard	$T_A = 25^{\circ}C$ (Notes 2 and 3)	±8			kV
V _{CL}	Channel Clamp Voltage Positive Transients Negative Transients	$T_A = 25^{\circ}C$, $I_{PP} = 1A$, $t_P = 8/20 \ \mu S$ (Note 3)		+9.9 -1.6		V
R _{DYN}	Dynamic Resistance Positive Transients Negative Transients	$T_A = 25^{\circ}C$, $I_{PP} = 1A$, $t_P = 8/20 \ \mu S$ (Note 3)		0.96 0.5		Ω

Table 5. ELECTRICAL OPERATING CHARACTERISTICS FOR CM1293A-02SO (Note 1)

1. All parameters specified at $T_A = -40^{\circ}C$ to $+85^{\circ}C$ unless otherwise noted. 2. Standard IEC 61000-4-2 with $C_{\text{Discharge}} = 150 \text{ pF}$, $R_{\text{Discharge}} = 330 \Omega$, $V_P = 3.3 \text{ V}$, V_N grounded. 3. These measurements performed with no external capacitor on V_P .

PERFORMANCE INFORMATION

Input Channel Capacitance Performance Curves

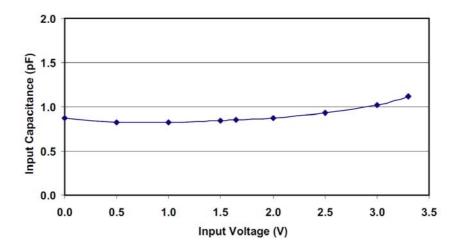


Figure 1. Typical Variation of C_{IN} vs. V_{IN} (f = 1 MHz, V_P = 3.3 V, V_N = 0 V, 0.1 μ F Chip Capacitor between V_P and V_N, 25°C)

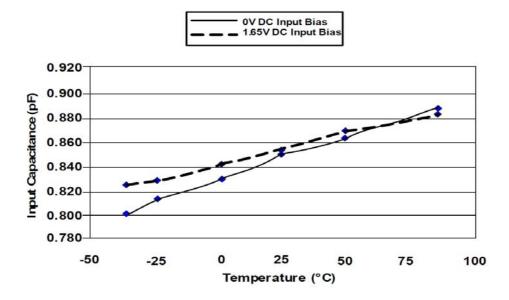
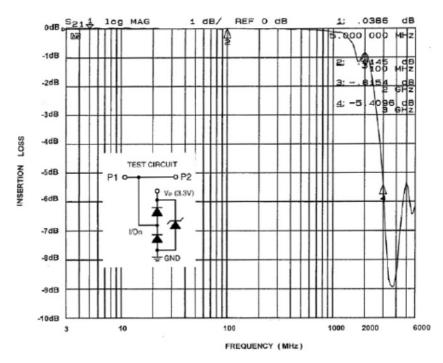



Figure 2. Typical Variation of C_{IN} vs. Temp (f = 1 MHz, V_{IN} = 30 mV, V_P = 3.3 V, V_N = 0 V, 0.1 μ F Chip Capacitor between V_P and V_N)

PERFORMANCE INFORMATION (Cont'd)

Typical Filter Performance (nominal conditions unless specified otherwise, 50 Ω Environment)

Figure 3. Insertion Loss (S21) vs. Frequency (0 V DC Bias, V_P = 3.3 V)

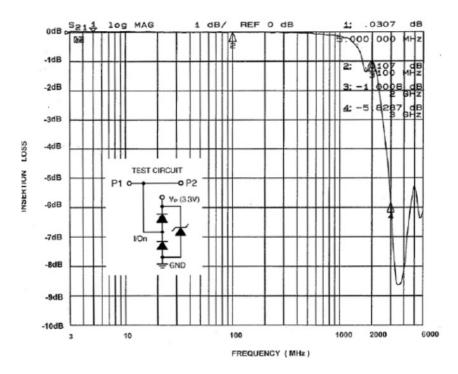


Figure 4. Insertion Loss (S21) vs. Frequency (2.5 V DC Bias, V_P = 3.3 V)

APPLICATION INFORMATION

Design Considerations

In order to realize the maximum protection against ESD pulses, care must be taken in the PCB layout to minimize parasitic series inductances on the Supply/Ground rails as well as the signal trace segment between the signal input (typically a connector) and the ESD protection device. Refer to Figure 5, which illustrates an example of a positive ESD pulse striking an input channel. The parasitic series inductance back to the power supply is represented by L_1 and L_2 . The voltage V_{CL} on the line being protected is:

$V_{CL} = Fwd \text{ voltage drop of } D_1 + V_{SUPPLY} + L_1 \text{ x } d(I_{ESD}) / dt + L_2 \text{ x } d(I_{ESD}) / dt$

where I_{ESD} is the ESD current pulse, and V_{SUPPLY} is the positive supply voltage.

An ESD current pulse can rise from zero to its peak value in a very short time. As an example, a level 4 contact discharge per the IEC61000–4–2 standard results in a current pulse that rises from zero to 30 Amps in 1 ns. Here $d(I_{ESD})/dt$ can be approximated by $\Delta I_{ESD}/\Delta t$, or 30/(1x10⁻⁹). So just 10 nH of series inductance (L₁ and L₂ combined) will lead to a 300 V increment in V_{CL}!

Similarly for negative ESD pulses, parasitic series inductance from the V_N pin to the ground rail will lead to drastically increased negative voltage on the line being protected.

The CM1293 has an integrated Zener diode between V_P and V_N . This greatly reduces the effect of supply rail inductance L_2 on V_{CL} by clamping V_P at the breakdown voltage of the Zener diode. However, for the lowest possible V_{CL} , especially when V_P is biased at a voltage significantly below the Zener breakdown voltage, it is recommended that a 0.22 μ F ceramic chip capacitor be connected between V_P and the ground plane.

As a general rule, the ESD Protection Array should be located as close as possible to the point of entry of expected electrostatic discharges. The power supply bypass capacitor mentioned above should be as close to the V_P pin of the Protection Array as possible, with minimum PCB trace lengths to the power supply, ground planes and between the signal input and the ESD device to minimize stray series inductance.

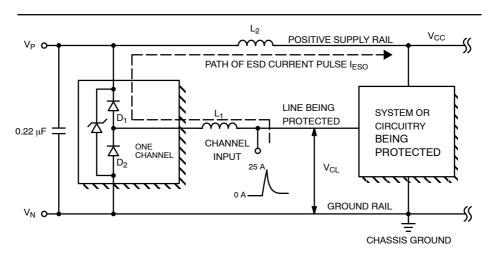
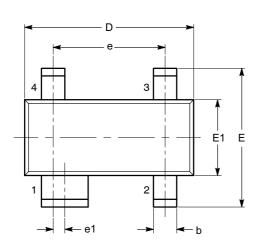
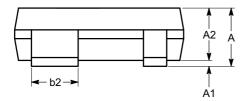
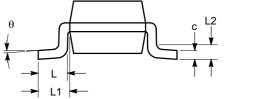



Figure 5. Application of Positive ESD Pulse between Input Channel and Ground


PACKAGE DIMENSIONS

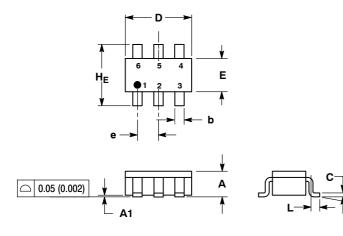
SOT-143, 4 Lead CASE 527AF-01 **ISSUE A**

SYMBOL	MIN	NOM	MAX		
А	0.80		1.22		
A1	0.05		0.15		
A2	0.75	0.90	1.07		
b	0.30		0.50		
b2	0.76		0.89		
с	0.08		0.20		
D	2.80	2.90	3.04		
E	2.10		2.64		
E1	1.20	1.30	1.40		
е		1.92 BSC			
e1		0.20 BSC			
L	0.40	0.50	0.60		
L1		0.54 REF			
L2		0.25			
θ	0°		8°		


TOP VIEW

SIDE VIEW

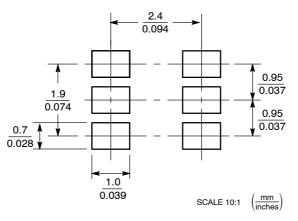
Notes:


- All dimensions are in millimeters. Angles in degrees.
 Complies with JEDEC TO-253.

END VIEW

PACKAGE DIMENSIONS

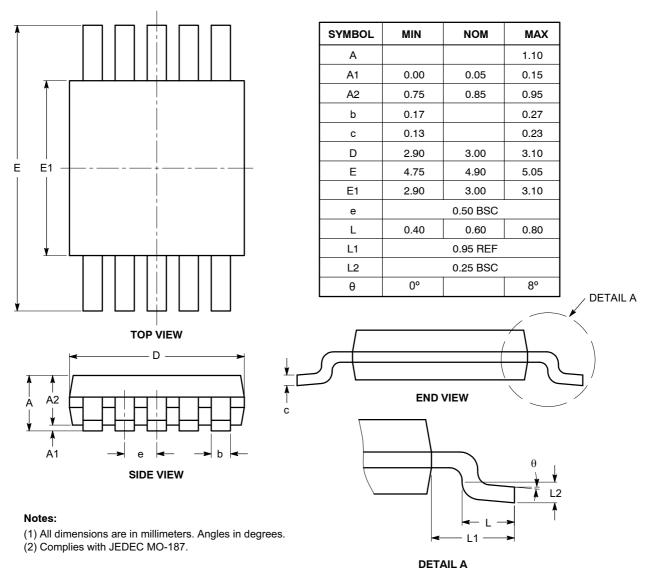
SC-74 CASE 318F-05 **ISSUE M**



NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. 318F-01, -02, -03, -04 OBSOLETE. NEW STANDARD 318F-05.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.90	1.00	1.10	0.035	0.039	0.043
A1	0.01	0.06	0.10	0.001	0.002	0.004
b	0.25	0.37	0.50	0.010	0.015	0.020
c	0.10	0.18	0.26	0.004	0.007	0.010
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	1.30	1.50	1.70	0.051	0.059	0.067
е	0.85	0.95	1.05	0.034	0.037	0.041
L	0.20	0.40	0.60	0.008	0.016	0.024
ΗE	2.50	2.75	3.00	0.099	0.108	0.118
θ	0°	-	10°	0°	-	10°


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

MSOP 10, 3x3 CASE 846AE-01 ISSUE O

FireWire is a registered trademark of Apple Computer, Inc.; i.LINK is a trademark of Sony Corporation.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the NGL DC product could create a situation where personal injury or death may occur. Should Buyer purchase or uses SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use operits to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative