

ADG1219* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

DOCUMENTATION

Application Notes

- AN-874: Operating the ADG12xx Series of Parts with 5 V Supplies and the Impact on Performance

Data Sheet

- ADG1219: Low Capacitance, Low Charge Injection, ± 15 V/12 V CMOS SPDT in SOT-23 Data Sheet

REFERENCE MATERIALS

Product Selection Guide

- Switches and Multiplexers Product Selection Guide

DESIGN RESOURCES

- ADG1219 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADG1219 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

Features	1	Absolute Maximum Ratings	6
Applications	1	ESD Caution	6
Functional Block Diagram	1	Pin Configuration and Function Descriptions	7
General Description	1	Typical Performance Characteristics	8
Revision History	2	Test Circuits	12
Specifications	3	Terminology	14
Dual Supply	3	Outline Dimensions	15
Single Supply	4	Ordering Guide	15

REVISION HISTORY

3/09—Rev. 0 to Rev. A

Change to Power Requirements, I_{DD} Parameter, Table 1	4
Change to Power Requirements, I_{DD} Parameter, Table 2	5
Updated Outline Dimensions	15

4/08—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

$V_{DD} = 15 \text{ V} \pm 10\%$, $V_{SS} = -15 \text{ V} \pm 10\%$, $\text{GND} = 0 \text{ V}$, unless otherwise noted.

Table 1.

Parameters	B Version ¹			Unit	Test Conditions/Comments
	25°C	-40°C to +85°C	-40°C to +125°C		
ANALOG SWITCH					
Analog Signal Range			$V_{DD} \text{ to } V_{SS}$	V	
On Resistance, R_{ON}	120			$\Omega \text{ typ}$	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$; see Figure 23
On Resistance Match Between Channels, ΔR_{ON}	200	240	270	$\Omega \text{ max}$	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Flatness, $R_{FLAT(ON)}$	3.5			$\Omega \text{ typ}$	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
On Resistance Flatness, $R_{FLAT(ON)}$	6	10	12	$\Omega \text{ max}$	
On Resistance Flatness, $R_{FLAT(ON)}$	20			$\Omega \text{ typ}$	$V_S = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}; I_S = -1 \text{ mA}$
On Resistance Flatness, $R_{FLAT(ON)}$	64	76	84	$\Omega \text{ max}$	
LEAKAGE CURRENTS					
Source Off Leakage, I_S (Off)	± 0.004			nA typ	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Drain Off Leakage, I_D (Off)	± 0.1	± 0.6	± 1	nA max	$V_S = \pm 10 \text{ V}, V_S = \pm 10 \text{ V}$; see Figure 24
Channel On Leakage, I_D, I_S (On)	± 0.009			nA typ	$V_S = \pm 10 \text{ V}, V_S = \pm 10 \text{ V}$; see Figure 24
Channel On Leakage, I_D, I_S (On)	± 0.1	± 0.6	± 1	nA max	$V_S = V_D = \pm 10 \text{ V}$; see Figure 25
Channel On Leakage, I_D, I_S (On)	± 0.02			nA typ	
Channel On Leakage, I_D, I_S (On)	± 0.2	± 0.6	± 1	nA max	
DIGITAL INPUTS					
Input High Voltage, V_{INH}			2.0	V min	
Input Low Voltage, V_{INL}			0.8	V max	
Input Current, I_{INL} or I_{INH}	0.005			$\mu\text{A typ}$	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C_{IN}			± 0.1	$\mu\text{A max}$	
Digital Input Capacitance, C_{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, $t_{TRANSITION}$	140			ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
t_{ON} (EN)	170	200	230	ns max	$V_S = 10 \text{ V}$; see Figure 30
t_{ON} (EN)	85			ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
t_{OFF} (EN)	105	130	140	ns max	$V_S = 10 \text{ V}$; see Figure 30
t_{OFF} (EN)	105			ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
Break-Before-Make Time Delay, t_{BBM}	125	150	170	ns max	$V_S = 10 \text{ V}$; see Figure 30
Break-Before-Make Time Delay, t_{BBM}	40			ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
Charge Injection	0.1		10	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 31
Off Isolation	77			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}$; see Figure 32
Channel-to-Channel Crosstalk	80			dB typ	$R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}$; see Figure 26
Total Harmonic Distortion + Noise	0.15			dB typ	$R_L = 50 \Omega, C_L = 5 \text{ pF}$; see Figure 28
-3 dB Bandwidth	520			MHz typ	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$
C_S (Off)	2.5			pF typ	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$
C_D (Off)	3.3			pF max	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$
C_D, C_S (On)	4.3			pF typ	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$
C_D, C_S (On)	5.1			pF max	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$
C_D, C_S (On)	7.5			pF typ	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$
C_D, C_S (On)	10			pF max	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$

Parameters	B Version ¹			Unit	Test Conditions/Comments
	25°C	-40°C to +85°C	-40°C to +125°C		
POWER REQUIREMENTS					
I _{DD}	0.001		1.0	µA typ	V _{DD} = +16.5 V, V _{SS} = -16.5 V
I _{DD}	140		190	µA max	Digital inputs = 0 V or V _{DD}
I _{SS}	0.001		1.0	µA typ	Digital inputs = 5 V
V _{DD} /V _{SS}			±5/±16.5	µA max	Digital inputs = 0 V, 5 V or V _{DD}
				V min/max	V _{DD} = V _{SS}

¹ Temperature range for B version is -40°C to +125°C.

² Guaranteed by design; not subject to production test.

SINGLE SUPPLY

V_{DD} = 12 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameters	B Version ¹			Unit	Test Conditions/Comments
	25°C	-40°C to +85°C	-40°C to +125°C		
ANALOG SWITCH					
Analog Signal Range		0 V to V _{DD}		V	
On Resistance, R _{ON}	300			Ω typ	V _S = 0 V to 10 V, I _S = -1 mA; see Figure 23
	475	567	625	Ω max	V _{DD} = 10.8 V, V _{SS} = 0 V
On Resistance Match Between Channels, ΔR _{ON}	4.5			Ω typ	V _S = 0 V to 10 V, I _S = -1 mA
	16	26	27	Ω max	
On Resistance Flatness, R _{FLAT(ON)}	60			Ω typ	V _S = 3 V, 6 V, 9 V, I _S = -1 mA
LEAKAGE CURRENTS					
Source Off Leakage, I _S (Off)	±0.006			nA typ	V _{DD} = 13.2 V
	±0.1	±0.6	±1	nA max	V _S = 1 V/10 V, V _D = 10 V/1 V; see Figure 24
Drain Off Leakage, I _D (Off)	±0.006			nA typ	V _S = 1 V/10 V, V _D = 10 V/1 V; see Figure 24
	±0.1	±0.6	±1	nA max	
Channel On Leakage, I _D , I _S (On)	±0.02			nA typ	V _S = V _D = 1 V or 10 V; see Figure 25
	±0.2	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0		V min	
Input Low Voltage, V _{INL}		0.8		V max	
Input Current, I _{INL} or I _{INH}	0.001		±0.1	µA typ	V _{IN} = V _{INL} or V _{INH}
				µA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ²					
Transition Time, t _{TRANSITION}	195			ns typ	R _L = 300 Ω, C _L = 35 pF
	250	300	340	ns max	V _S = 8 V; see Figure 30
t _{ON} (EN)	120			ns typ	R _L = 300 Ω, C _L = 35 pF
	150	190	210	ns max	V _S = 8 V; see Figure 30
t _{OFF} (EN)	145			ns typ	R _L = 300 Ω, C _L = 35 pF
	185	220	255	ns max	V _S = 8 V; see Figure 30
Break-Before-Make Time Delay, t _{BBM}	70		10	ns typ	R _L = 300 Ω, C _L = 35 pF
				ns min	V _{S1} = V _{S2} = 8 V; see Figure 31
Charge Injection	-0.8			pC typ	V _S = 6 V, R _S = 0 Ω, C _L = 1 nF; see Figure 32
Off Isolation	80			dB typ	R _L = 50 Ω, C _L = 5 pF, f = 1 MHz; see Figure 26
Channel-to-Channel Crosstalk	80			dB typ	R _L = 50 Ω, C _L = 5 pF, f = 1 MHz; see Figure 27
-3 dB Bandwidth	400			MHz typ	R _L = 50 Ω, C _L = 5 pF; see Figure 28

Parameters	B Version ¹			Unit	Test Conditions/Comments
	25°C	-40°C to +85°C	-40°C to +125°C		
C _S (Off)	2.9			pF typ	f = 1 MHz; V _S = 6 V
	3.7			pF max	f = 1 MHz; V _S = 6 V
C _D (Off)	5			pF typ	f = 1 MHz; V _S = 6 V
	5.8			pF max	f = 1 MHz; V _S = 6 V
C _D , C _S (On)	8.5			pF typ	f = 1 MHz; V _S = 6 V
	11			pF max	f = 1 MHz; V _S = 6 V
POWER REQUIREMENTS					
I _{DD}	0.001			µA typ	V _{DD} = 13.2 V
		1.0		µA max	Digital inputs = 0 V or V _{DD}
I _{DD}	140		190	µA typ	Digital inputs = 5 V
V _{DD}			5/16.5	µA max	
				V min/max	V _{SS} = 0 V, GND = 0 V

¹ Temperature range for B version is -40°C to +125°C.

² Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	−0.3 V to +25 V
V _{SS} to GND	+0.3 V to −25 V
Analog Inputs ¹	V _{SS} − 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND − 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current per Channel, S or D	30 mA
Operating Temperature Range Industrial (B Version)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
8-Lead SOT-23, θ _{JA} Thermal Impedance	211.5°C/W
Reflow Soldering Peak Temperature, Pb Free	260°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

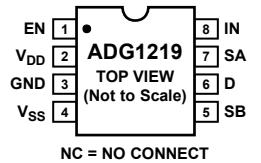


Figure 3. SOT-23 Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off. When this pin is high, the IN logic input determines which switch is turned on.
2	V _{DD}	Most Positive Power Supply Potential.
3	GND	Ground (0 V) Reference.
4	V _{SS}	Most Negative Power Supply Potential.
5	SB	Source Terminal. Can be an input or output.
6	D	Drain Terminal. Can be an input or output.
7	SA	Source Terminal. Can be an input or output.
8	IN	Logic Control Input.

Table 5. Truth Table

EN	IN	Switch A	Switch B
0	X	Off	Off
1	0	On	Off
1	1	Off	On

TYPICAL PERFORMANCE CHARACTERISTICS

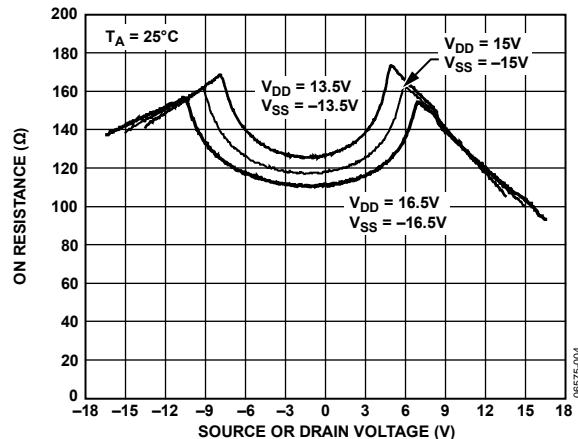
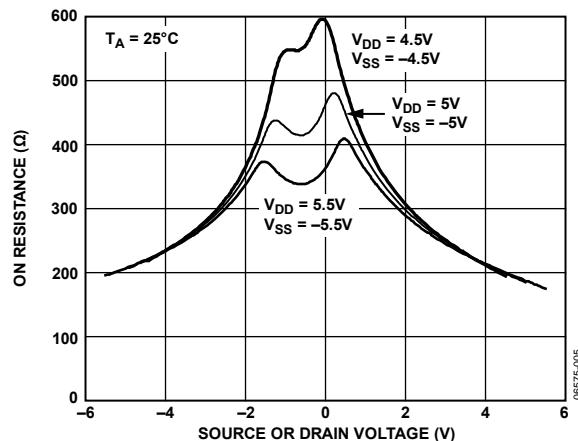
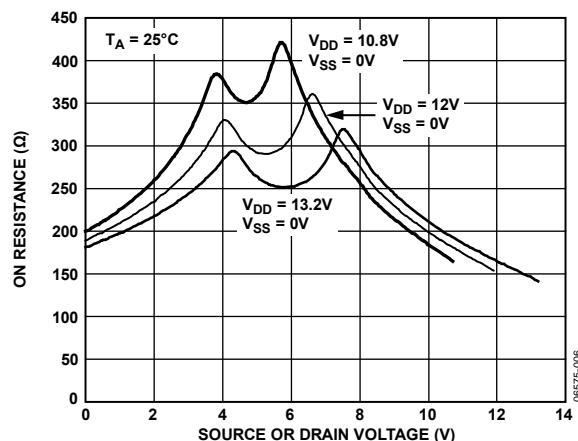
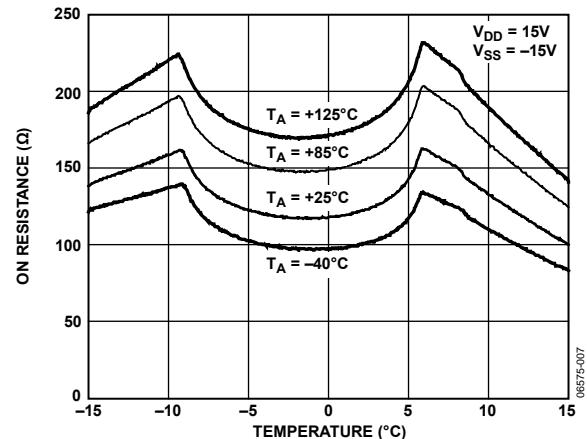
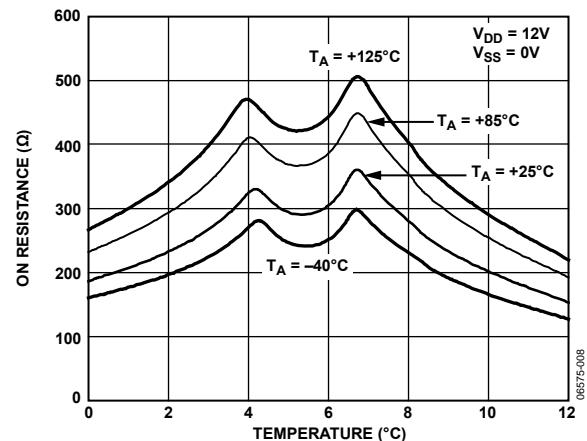
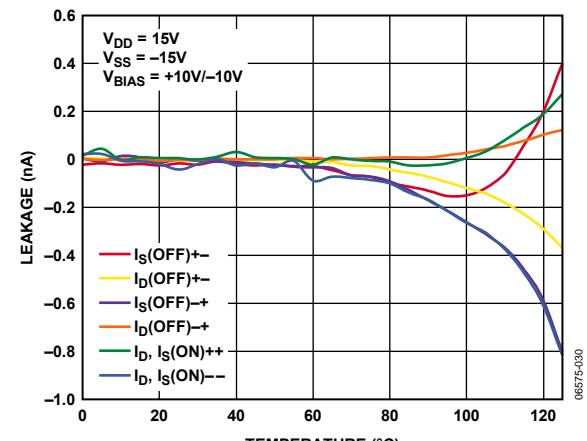
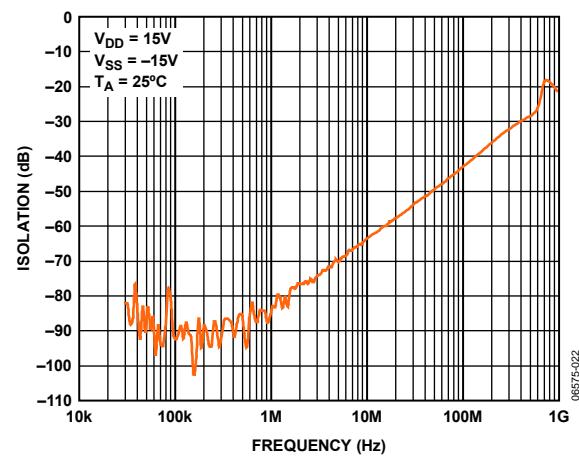
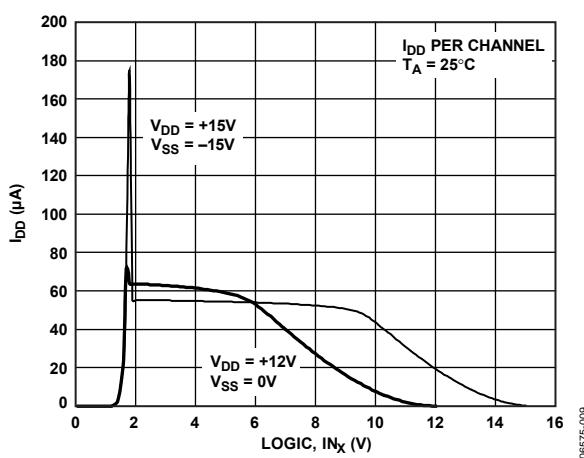
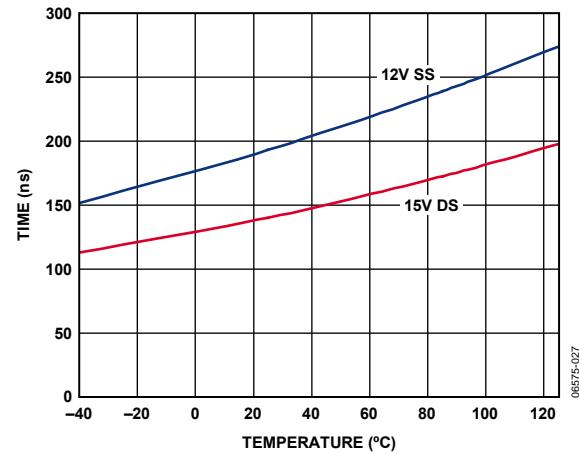
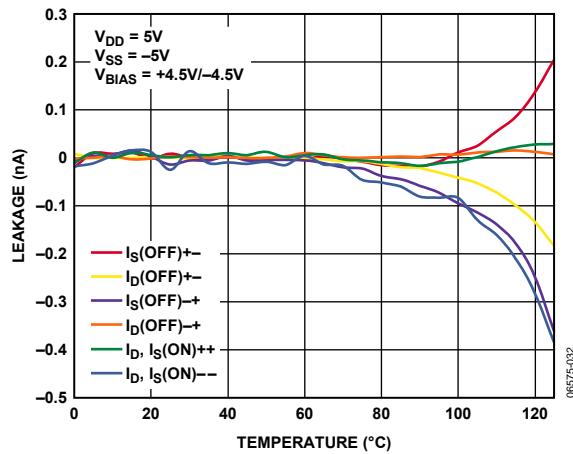
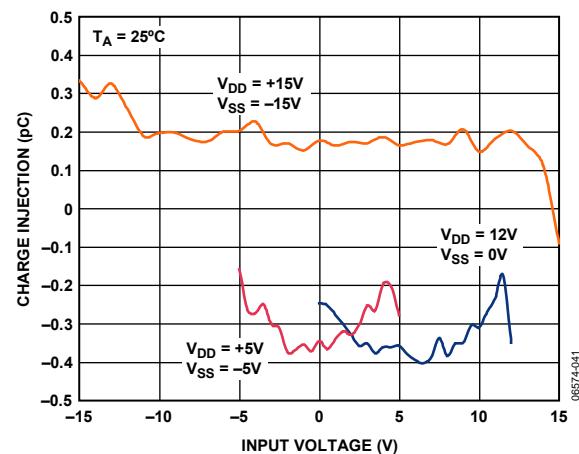
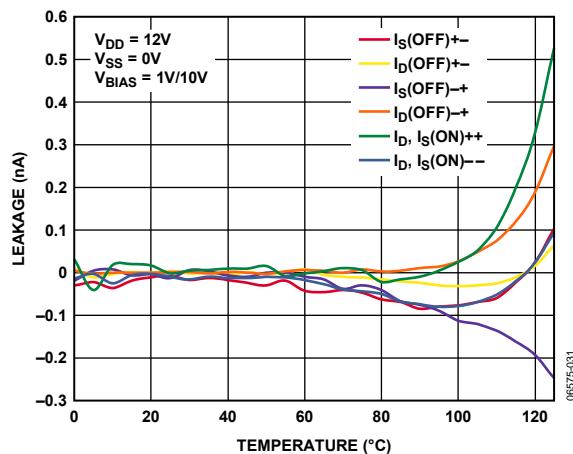












Figure 4. On Resistance as a Function of V_D (V_S) for Dual SupplyFigure 5. On Resistance as a Function of V_D (V_S) for Dual SupplyFigure 6. On Resistance as a Function of V_D (V_S) for Single SupplyFigure 7. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual SupplyFigure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

Figure 9. Leakage Currents as a Function of Temperature, 15 V Dual Supply

ADG1219

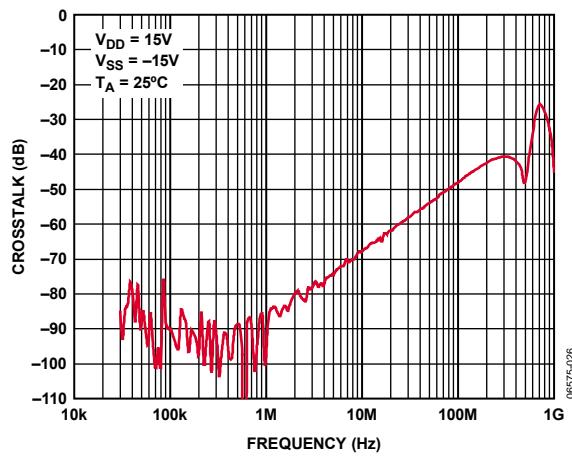


Figure 16. Crosstalk vs. Frequency

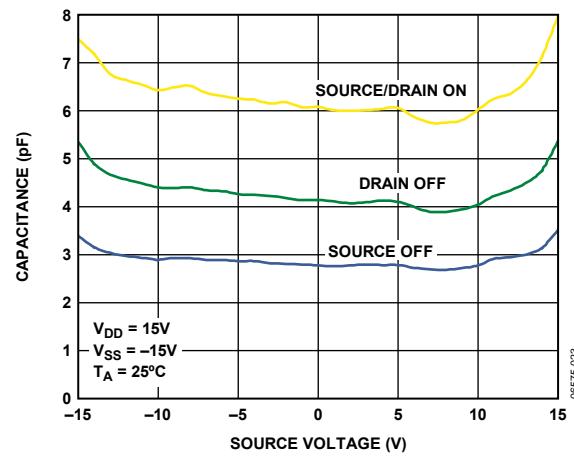


Figure 19. Capacitance vs. Source Voltage for Dual Supply

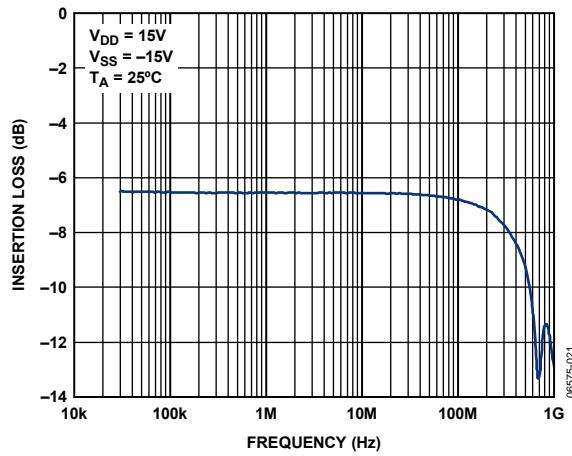


Figure 17. On Response vs. Frequency

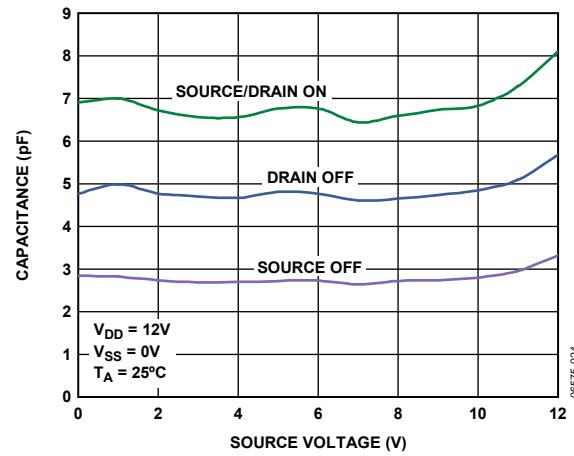


Figure 20. Capacitance vs. Source Voltage for Single Supply

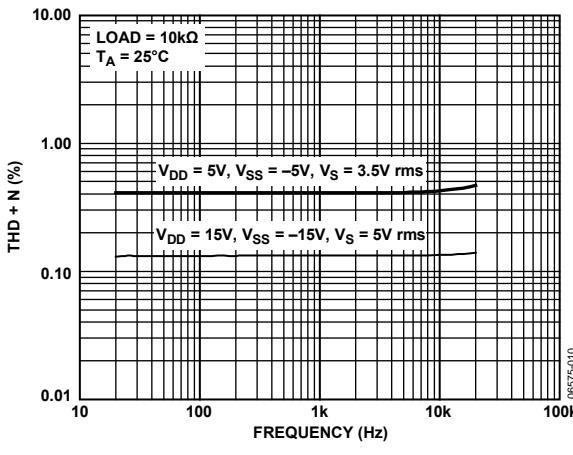


Figure 18. THD + N vs. Frequency

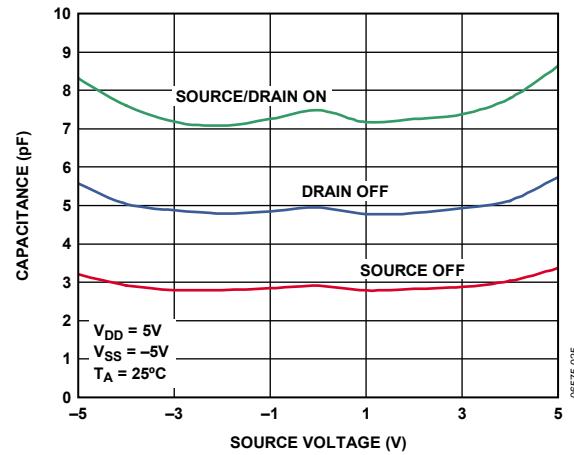


Figure 21. Capacitance vs. Source Voltage for Dual Supply

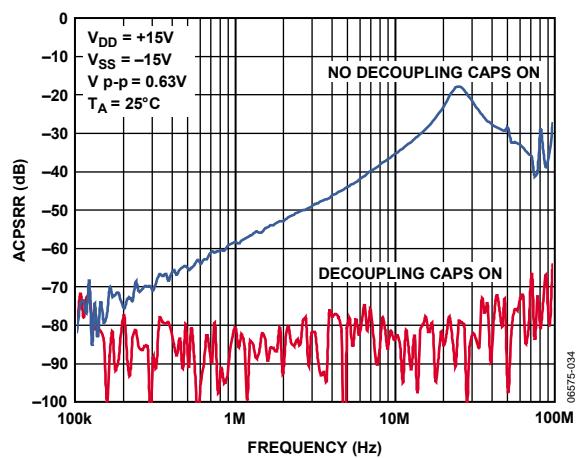


Figure 22. ACPSRR vs. Frequency

TEST CIRCUITS

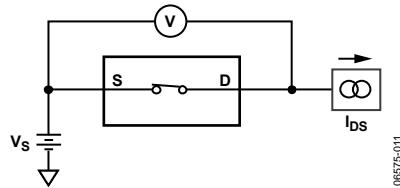
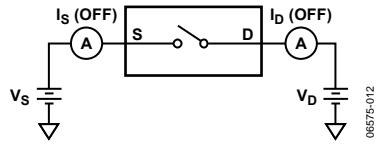
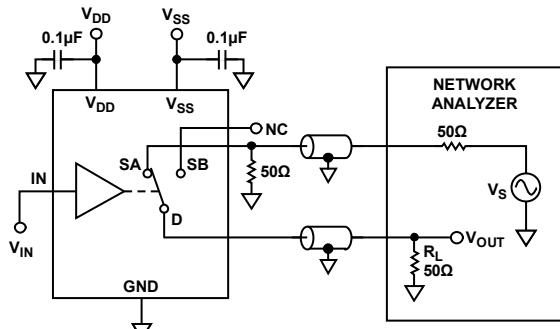


Figure 23. On Resistance

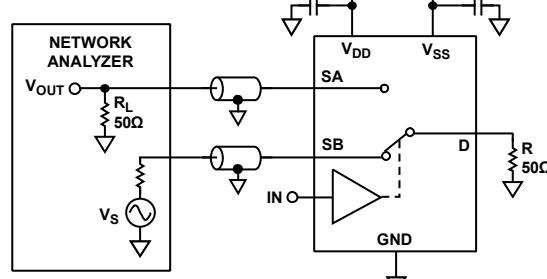
06575-011




Figure 24. Off Leakage

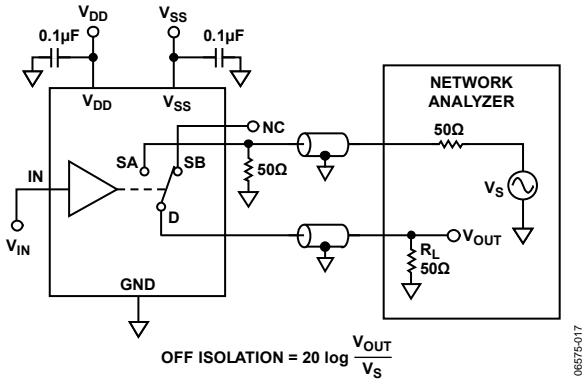
06575-012

Figure 25. On Leakage


06575-013

$$\text{INSERTION LOSS} = 20 \log \frac{V_{\text{OUT}} \text{ WITH SWITCH}}{V_{\text{OUT}} \text{ WITHOUT SWITCH}}$$

Figure 27. Channel-to-Channel Crosstalk


06575-018

$$\text{CHANNEL-TO-CHANNEL CROSSTALK} = 20 \log \frac{V_{\text{OUT}}}{V_S}$$

Figure 28. Bandwidth

06575-019

$$\text{OFF ISOLATION} = 20 \log \frac{V_{\text{OUT}}}{V_S}$$

Figure 26. Off Isolation

06575-017

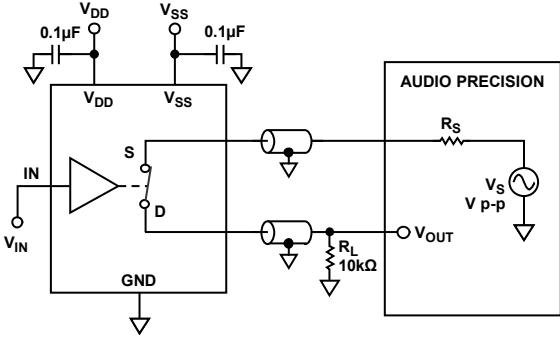


Figure 29. THD + Noise

06575-020

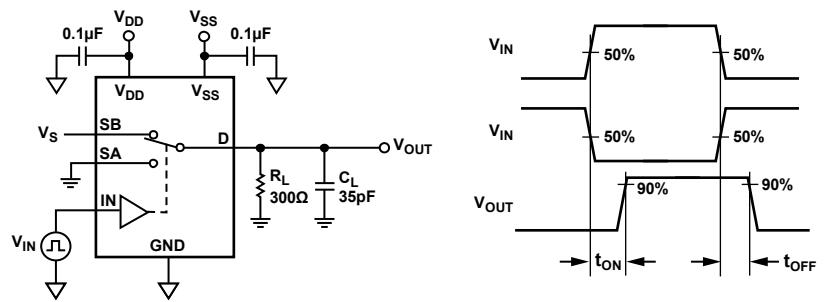


Figure 30. Switching Times

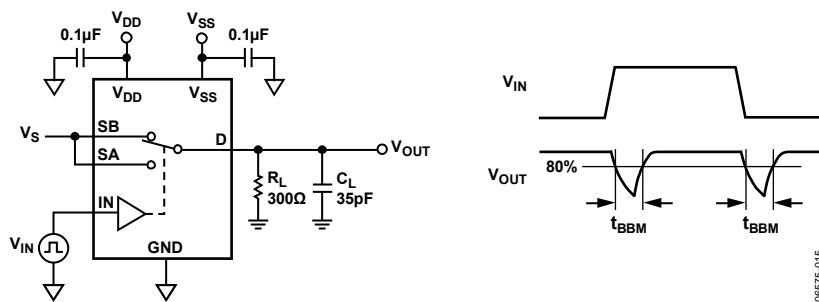


Figure 31. Break-Before-Make Time Delay

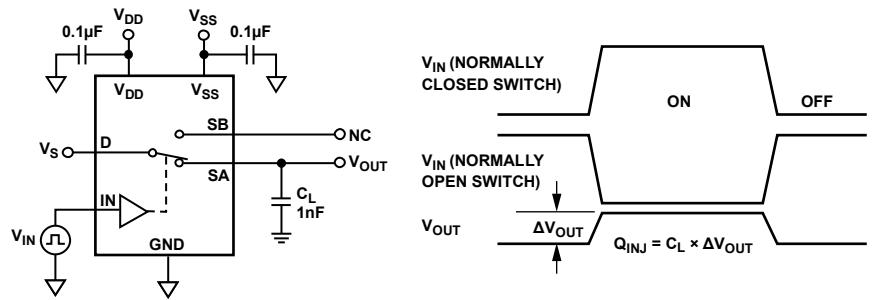


Figure 32. Charge Injection

TERMINOLOGY

I_{DD}

The positive supply current.

I_{SS}

The negative supply current.

V_D (V_S)

The analog voltage on Terminal D and Terminal S.

R_{ON}

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

I_S (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

I_D, I_S (On)

The channel leakage current with the switch on.

V_{INL}

The maximum input voltage for Logic 0.

V_{INH}

The minimum input voltage for Logic 1.

I_{INL} (I_{INH})

The input current of the digital input.

C_S (Off)

The off switch source capacitance, measured with reference to ground.

C_D (Off)

The off switch drain capacitance, measured with reference to ground.

C_D, C_S (On)

The on switch capacitance, measured with reference to ground.

C_{IN}

The digital input capacitance.

t_{ON} (EN)

Delay time between the 50% and 90% points of the digital input and switch on condition.

t_{OFF} (EN)

Delay time between the 50% and 90% points of the digital input and switch off condition.

t_{TRANSITION}

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

T_{BBM}

Off time measured between the 80% point of both switches when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

Total Harmonic Distortion (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

Measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

OUTLINE DIMENSIONS

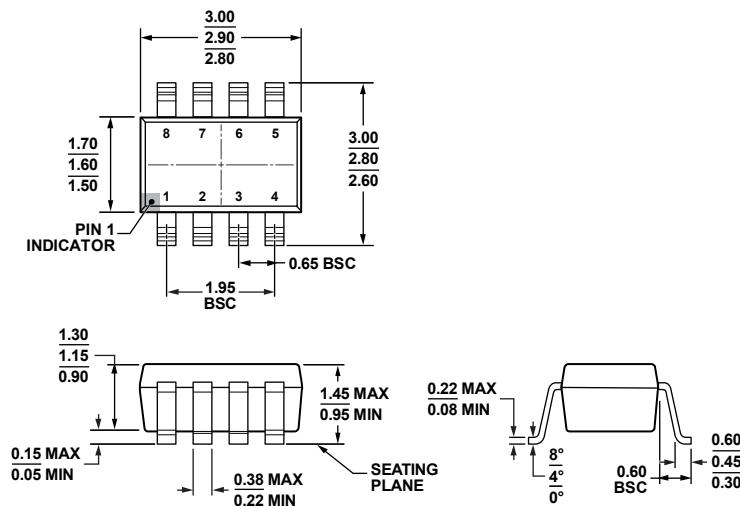


Figure 33. 8-Lead Lead Small Outline Transistor Package [SOT-23]
(RJ-8)
Dimensions shown in millimeters

121608-A

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG1219BRJZ-R2 ¹	−40°C to +125°C	8-Lead Lead Small Outline Transistor Package [SOT-23]	RJ-8	S24
ADG1219BRJZ-REEL7 ¹	−40°C to +125°C	8-Lead Lead Small Outline Transistor Package [SOT-23]	RJ-8	S24

¹ Z = RoHS Compliant Part.

NOTES

©2008–2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
D06575-0-3/09(A)

www.analog.com