

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (1,2)	TJ	-40 to +225	°C
CW Operation @ T _C = 25°C Derate above 25°C	CW	278 1.2	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ^(2,3)	Unit
Thermal Resistance, Junction to Case Case Temperature 73°C, 63 W Avg., W-CDMA, 28 Vdc, I _{DQA} = 500 mA, V _{GSB} = 0.5 Vdc, 2140 MHz	$R_{ heta JC}$	0.33	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2
Machine Model (per EIA/JESD22-A115)	В
Charge Device Model (per JESD22-C101)	IV

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾					
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	1	μAdc
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
On Characteristics - Side A ⁽⁴⁾					
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 140 μ Adc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DA} = 500 mAdc, Measured in Functional Test)	V _{GSA(Q)}	1.4	1.9	2.2	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 1.4 Adc)	V _{DS(on)}	0.1	0.2	0.3	Vdc
On Characteristics - Side B ⁽⁴⁾					
Gate Threshold Voltage (V_{DS} = 10 Vdc, I_D = 240 μ Adc)	V _{GS(th)}	0.8	1.2	1.6	Vdc
Drain-Source On-Voltage (V _{GS} = 10 Vdc, I _D = 2.4 Adc)	V _{DS(on)}	0.1	0.2	0.3	Vdc

1. Continuous use at maximum temperature will affect MTTF.

MTTF calculator available at <u>http://www.freescale.com/rf</u>. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

 Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to <u>http://www.freescale.com/rf</u>. Select Documentation/Application Notes - AN1955.

4. Each side of device measured separately.

(continued)

A2T21H360-24SR6

2

Table 4. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit			
Functional Tests ^(1,2) (In Freescale Doherty Test Fixture, 50 ohm system) V _{DD} = 28 Vdc, I _{DDA} = 500 mA, V _{GSB} = 0.5 Vdc,								

 $P_{out} = 63 \text{ W Avg.}, f = 2140 \text{ MHz}$, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ $\pm 5 \text{ MHz}$ Offset.

Power Gain	G _{ps}	15.6	16.2	18.6	dB			
Drain Efficiency	η_D	49.2	51.8	—	%			
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF	PAR	7.2	7.9	—	dB			
Adjacent Channel Power Ratio	ACPR	_	-28.8	-27.2	dBc			
Load Mismatch ⁽²⁾ (In Freescale Doherty Test Fixture, 50 ohm system) I _{DQA} = 500 mA, V _{GSB} = 0.5 Vdc, f = 2140 MHz								
VSWR 10:1 at 28 Vdc, 288 W Pulse Output Power No Device Degradation								

(3 dB Input Overdrive from 363 W Pulse Rated Power)

Typical Performance ⁽²⁾ (In Freescale Doherty Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQA} = 500 mA, V_{GSB} = 0.5 Vdc, 2110–2170 MHz Bandwidth

Pout @ 1 dB Compression Point, CW		—	301 ⁽³⁾	_	W
P _{out} @ 3 dB Compression Point (4)	P3dB	—	400	—	W
AM/PM (Maximum value measured at the P3dB compression point across the 2110–2170 MHz bandwidth)		_	-27	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}		100	—	MHz
Gain Flatness in 60 MHz Bandwidth @ P _{out} = 63 W Avg.	G _F	—	0.2	—	dB
Gain Variation over Temperature (–30°C to +85°C)	ΔG	_	0.012	—	dB/°C
Output Power Variation over Temperature (-30°C to +85°C) ⁽³⁾	∆P1dB		0.002	—	dB/°C

1. Part internally matched both on input and output.

2. Measurements made with device in an asymmetrical Doherty configuration.

3. Exceeds recommended operating conditions. See CW operation data in Maximum Ratings table.

4. P3dB = Pavg + 7.0 dB where Pavg is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.

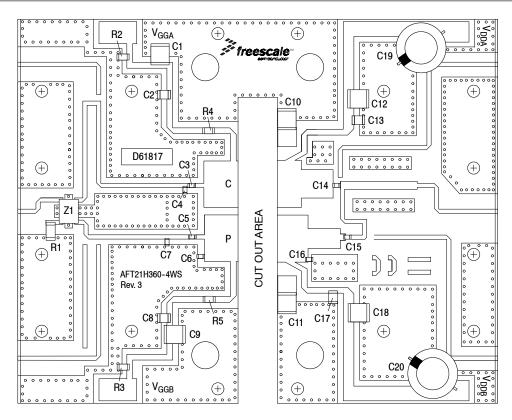


Figure 2. A2T21H360-24SR6 Test Circuit Component Layout

Part	Description	Part Number	Manufacturer
C1, C9, C10, C11, C12, C18	10 μF Chip Capacitors	C5750X7S2A106M230KB	TDK
C2, C8, C13, C17	9.1 pF Chip Capacitors	ATC100B9R1CT500XT	ATC
C3, C5, C15	9.1 pF Chip Capacitors	ATC600F9R1BT250XT	ATC
C4	0.5 pF Chip Capacitor	ATC600F0R5BT250XT	ATC
C6	0.8 pF Chip Capacitor	ATC600F0R8BT250XT	ATC
C7	1.1 pF Chip Capacitor	ATC600F1R1BT250XT	ATC
C14	4.7 pF Chip Capacitor	ATC600F4R7BT250XT	ATC
C16	0.2 pF Chip Capacitor	ATC600F0R2BT250XT	ATC
C19, C20	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
R1	50 Ω, 20 W Chip Resistor	C20A5024	Anaren
R2, R3	5.6 KΩ, 1/4 W Chip Resistors	CRCW12065K60FKEA	Vishay
R4, R5	6.2 Ω, 1/4 W Chip Resistors	CRCW12066R20FKEA	Vishay
Z1	2000–2300 MHz Band, 90°, 5 dB Directional Coupler	X3C21P1-05S	Anaren
PCB	Rogers RO4350B, 0.020″, ε _r = 3.66	D61817	MTL

TYPICAL CHARACTERISTICS — 2110–2170 MHz

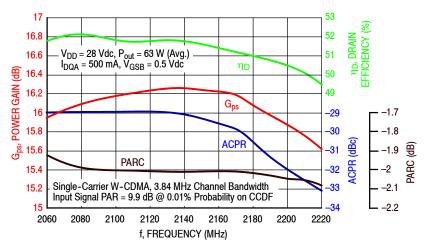


Figure 3. Single-Carrier Output Peak-to-Average Ratio Compression (PARC) Broadband Performance @ P_{out} = 63 Watts Avg.

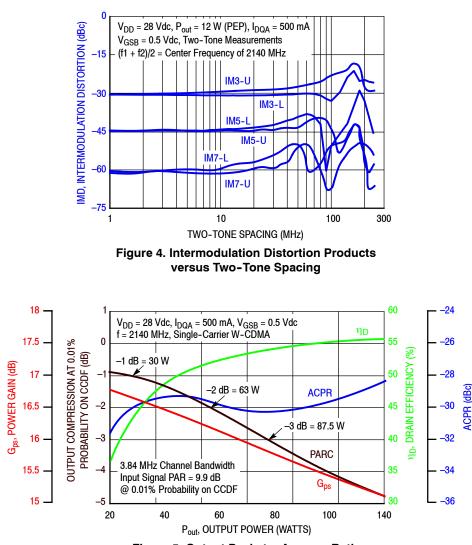
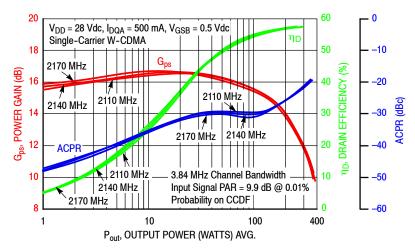
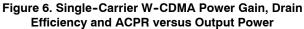




Figure 5. Output Peak-to-Average Ratio Compression (PARC) versus Output Power

TYPICAL CHARACTERISTICS — 2110–2170 MHz

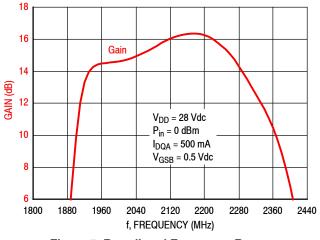


Figure 7. Broadband Frequency Response

Table 6. Carrier Side Load Pull Performance — Maximum Power Tuning

 V_{DD} = 28 Vdc, I_{DQA} = 774 mA, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

			Max Output Power						
			P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	3.58 – j6.92	3.34 + j6.51	2.02 – j4.19	19.3	51.9	155	58.6	-14	
2140	4.43 – j7.58	4.13 + j7.07	2.06 – j4.27	19.3	51.9	154	58.2	-15	
2170	5.91 – j8.34	5.51 + j7.60	2.07 – j4.36	19.3	51.8	153	57.2	-15	

			Max Output Power							
			P3dB							
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	3.58 – j6.92	3.35 + j6.99	1.95 – j4.52	16.9	52.7	184	58.7	-19		
2140	4.43 – j7.58	4.25 + j7.68	2.04 – j4.59	17.0	52.6	183	58.3	-20		
2170	5.91 – j8.34	5.85 + j8.37	2.03 – j4.68	17.0	52.6	181	57.4	-19		

(1) Load impedance for optimum P1dB power.

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

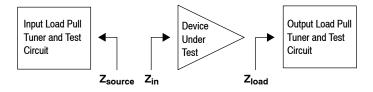
 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 7. Carrier Side Load Pull Performance — Maximum Drain Efficiency Tuning

 V_{DD} = 28 Vdc, I_{DQA} = 774 mA, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

			Max Drain Efficiency						
			P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)	
2110	3.58 – j6.92	3.40 + j6.96	3.99 – j2.11	22.1	49.7	93	69.3	-22	
2140	4.43 – j7.58	4.27 + j7.51	3.90 – j2.21	22.0	49.7	93	68.0	-21	
2170	5.91 – j8.34	5.82 + j7.92	4.04 – j2.22	22.0	49.5	88	66.1	-20	

			Max Drain Efficiency							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	3.58 – j6.92	3.29 + j7.28	3.58 – j2.55	19.7	50.9	122	69.6	-29		
2140	4.43 – j7.58	4.19 + j8.05	3.34 – j2.43	19.7	50.7	119	67.6	-29		
2170	5.91 – j8.34	5.96 + j8.77	3.33 – j2.55	19.7	50.8	119	66.4	-28		


(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

 Z_{in} = Impedance as measured from gate contact to ground.

 Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

2170

Table 8. Peaking Side Load Pull Performance — Maximum Power Tuning

3.68 + j6.78

Max Output Power P1dB Z_{load} ⁽¹⁾ Zin f Z_{source} η_D Gain (dB) (dBm) (W) (MHz) (Ω) (Ω) (Ω) (%) 2110 2.40 - j5.79 2.25 + j5.71 1.80 - j4.30 14.8 54.8 300 53.8 2140 2.86 - j6.24 2.71 + j6.24 1.91 - j4.27 15.2 54.8 300 54.5

1.96 - j4.34

V_{DD} = 28 Vdc, V_{GSB} = 0.8 Vdc, Pulsed CW, 10 μsec(on), 10% Duty Cycle

			Max Output Power							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	AM/PM (°)		
2110	2.40 – j5.79	2.33 + j6.08	1.77 – j4.50	12.6	55.5	353	55.2	-33		
2140	2.86 – j6.24	2.94 + j6.66	1.89 – j4.66	12.9	55.4	350	54.6	-34		
2170	3.85 – j6.73	4.09 + j7.25	1.95 – j4.72	13.1	55.5	351	54.6	-35		

15.4

54.8

302

54.3

(1) Load impedance for optimum P1dB power.

3.85 - j6.73

(2) Load impedance for optimum P3dB power.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

Z_{in} = Impedance as measured from gate contact to ground.

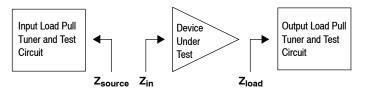
Z_{load} = Measured impedance presented to the output of the device at the package reference plane.

Table 9. Peaking Side Load Pull Performance — Maximum Drain Efficiency Tuning

 V_{DD} = 28 Vdc, V_{GSB} = 0.8 Vdc, Pulsed CW, 10 $\mu sec(on),$ 10% Duty Cycle

			Max Drain Efficiency							
				P1dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽¹⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	2.40 – j5.79	1.97 + j5.83	4.14 – j3.31	16.4	53.3	215	64.5	-33		
2140	2.86 – j6.24	2.41 + j6.35	3.90 — j2.93	16.7	53.4	218	64.4	-34		
2170	3.85 – j6.73	3.27 + j6.92	3.73 – j2.68	16.9	53.3	214	64.1	-35		

			Max Drain Efficiency							
				P3dB						
f (MHz)	Z _{source} (Ω)	Z _{in} (Ω)	Z _{load} ⁽²⁾ (Ω)	Gain (dB)	(dBm)	(W)	η _D (%)	АМ/РМ (°)		
2110	2.40 – j5.79	2.14 + j6.14	4.07 – j3.91	14.1	54.1	258	64.2	-40		
2140	2.86 – j6.24	2.65 + j6.74	3.90 – j3.32	14.6	54.1	257	64.4	-43		
2170	3.85 – j6.73	3.74 + j7.38	3.57 – j3.27	14.7	54.3	267	64.0	-43		


(1) Load impedance for optimum P1dB efficiency.

(2) Load impedance for optimum P3dB efficiency.

Z_{source} = Measured impedance presented to the input of the device at the package reference plane.

= Impedance as measured from gate contact to ground. Z_{in}

= Measured impedance presented to the output of the device at the package reference plane. Zload

A2T21H360-24SR6

AM/PM

(°)

-26

-27

-28

P1dB - TYPICAL CARRIER LOAD PULL CONTOURS - 2140 MHz

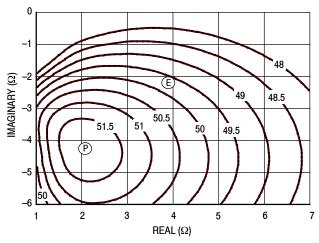


Figure 8. P1dB Load Pull Output Power Contours (dBm)

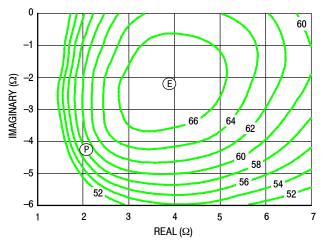


Figure 9. P1dB Load Pull Efficiency Contours (%)

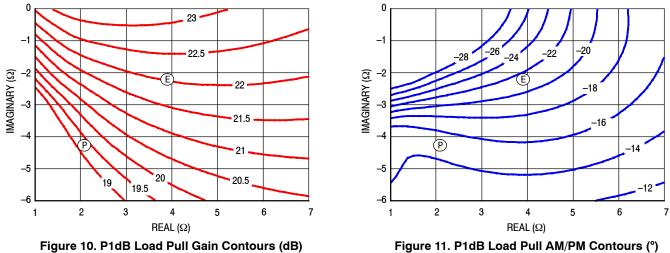
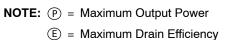
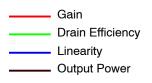




Figure 10. P1dB Load Pull Gain Contours (dB)

P3dB - TYPICAL CARRIER LOAD PULL CONTOURS - 2140 MHz

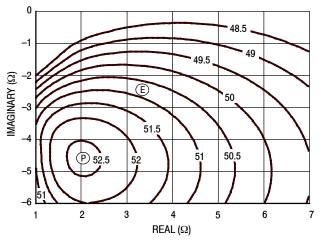


Figure 12. P3dB Load Pull Output Power Contours (dBm)

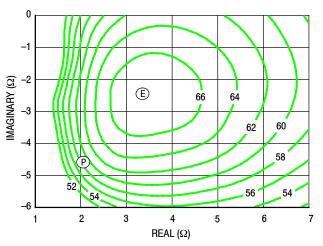


Figure 13. P3dB Load Pull Efficiency Contours (%)

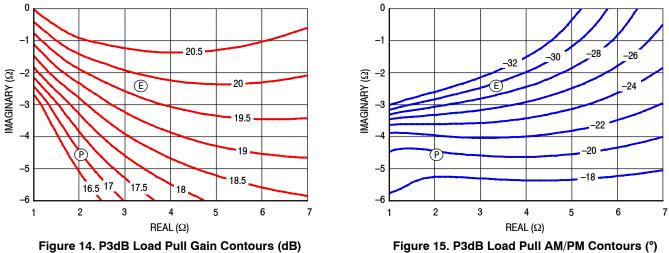


Figure 14. P3dB Load Pull Gain Contours (dB)

 Gain
 Drain Efficiency
 Linearity
 Output Power

P1dB - TYPICAL PEAKING LOAD PULL CONTOURS - 2140 MHz

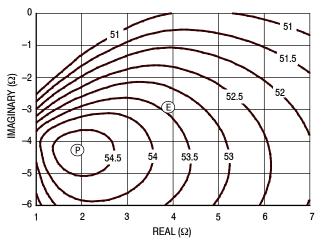


Figure 16. P1dB Load Pull Output Power Contours (dBm)

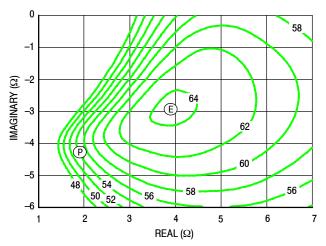
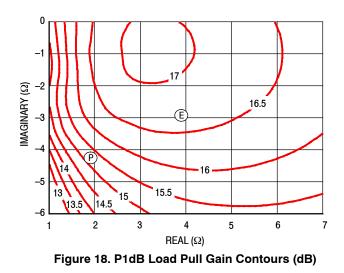



Figure 17. P1dB Load Pull Efficiency Contours (%)

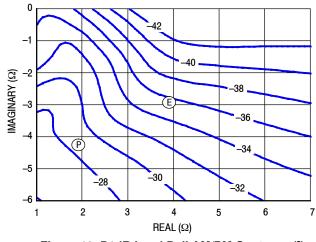
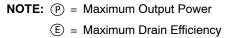
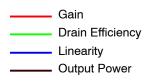




Figure 19. P1dB Load Pull AM/PM Contours (°)

0

P3dB – TYPICAL PEAKING LOAD PULL CONTOURS – 2140 MHz

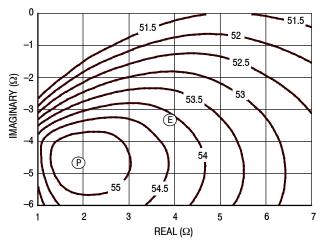


Figure 20. P3dB Load Pull Output Power Contours (dBm)

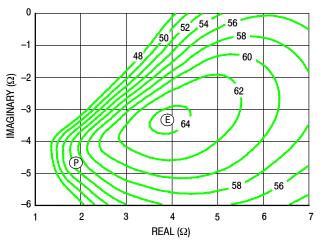


Figure 21. P3dB Load Pull Efficiency Contours (%)

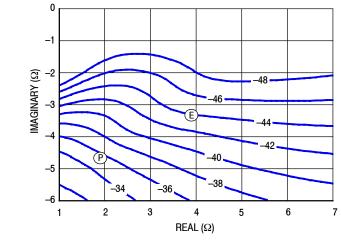
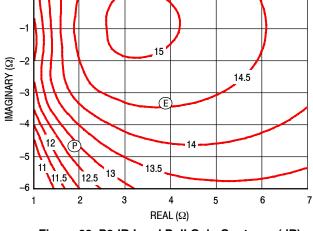
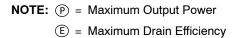
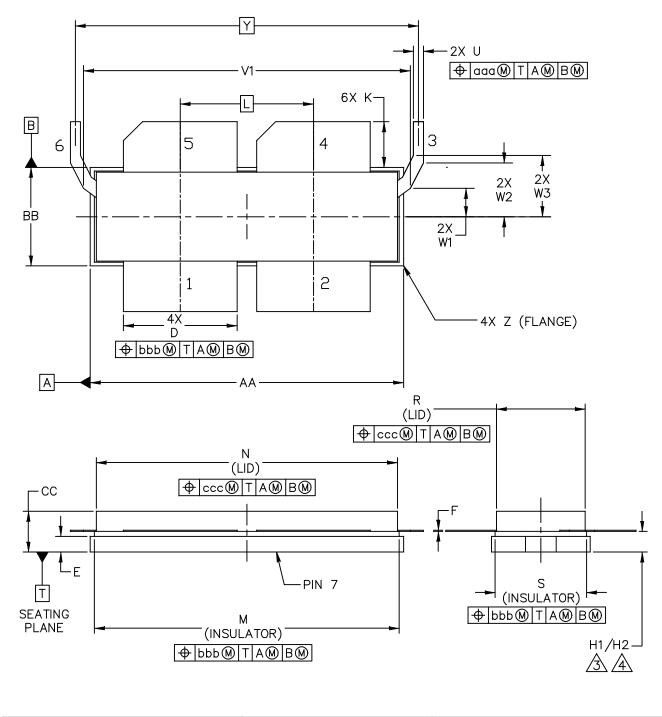


Figure 23. P3dB Load Pull AM/PM Contours (°)


Figure 22. P3dB Load Pull Gain Contours (dB)

 Gain
 Drain Efficiency
 Linearity
 Output Power

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO) SCALE
TITLE:		DOCUMEN	NT NO: 98ASA00513D	REV: A
NI-1230-4LS2L		STANDAF	RD: NON-JEDEC	
			08 N	/AR 2013

NOTES:

1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

2. CONTROLLING DIMENSION: INCH

3. DIMENSIONS H1 AND H2 ARE MEASURED .030 INCH (0.762 MM) AWAY FROM FLANGE PARALLEL TO DATUM B. H1 APPLIES TO PINS 1, 2, 4 & 5. H2 APPLIES TO PINS 3 & 6.

TOLERANCE OF DIMENSION H2 IS TENTATIVE AND COULD CHANGE ONCE SUFFICIENT MANUFACTURING DATA IS AVAILABLE.

	IN	СН	м	LLIMETER		INCH		MILLIN	METER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	1.265	1.275	32.13	32.39	N	1.218	1.242	30.94	31.55	
BB	.395	.405	10.03	5 10.29	R	.365	.375	9.27	9.53	
cc	.170	.190	4.32	4.83	S	.365	.375	9.27	9.53	
D	.455	.465	11.56	11.81	U	.035	.045	0.89	1.14	
E	.062	.066	1.57	1.68	V1	1.320	1.330	33.53	33.78	
F	.004	.007	0.10	0.18	W1	.110	.120	2.79	3.05	
H1	.082	.090	2.08	2.29	W2	.213	.223	5.41	5.66	
H2	.078	.094	1.98	2.39	W3	.243	.253	6.17	6.43	
ĸ	.175	.195	4.45	4.95	Y	1.3	1.390 BSC		BSC	
L	.540	BSC	13	3.72 BSC	Z	R.000	R.000 R.040		R1.02	
м	1.219	1.241	30.96	31.52	aaa		.015	0.	0.38	
					bbb		.010	0.	25	
					ccc		.020	0.51		
© F	REESCALE SEN		INC.	MECHANICA	L OUT	I TLINE	PRINT VERS	I SION NOT T	O SCALE	
TITLE:	ALL RIGHIS RESERVED.									
					r				REV: A	
	NI	–1230–4	4LS2L			STANDAR	D: NON-JEDEC	2		
	08 MAR 201							MAR 2013		

14

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

· AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- RF High Power Model
- .s2p File

Development Tools

• Printed Circuit Boards

For Software and Tools, do a Part Number search at http://www.freescale.com, and select the "Part Number" link. Go to Software & Tools on the part's Product Summary page to download the respective tool.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Jan. 2015	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typical," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2015 Freescale Semiconductor, Inc.

Document Number: A2T21H360-24S Rev. 0, 1/2015