8ETH06PbF, 8ETH06FPPbF

Vishay High Power Products

Hyperfast Rectifier, 8 A FRED PtTM

DYNAMIC RECOVERY CHARACTERISTICS (T _C = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS	
Reverse recovery time	t _{rr}	$I_F = 1 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	18	22	-
		$I_F = 8 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	20	25	
		T _J = 25 °C	I_F = 8 A dI_F/dt = 200 A/ μ s V_R = 390 V	-	25	=	ns -
		T _J = 125 °C		-	40	-	
Peak recovery current	I _{RRM}	T _J = 25 °C		-	2.4	-	A
		T _J = 125 °C		-	4.8	-	
Reverse recovery charge	Q _{rr}	T _J = 25 °C		-	25	=	nC
		T _J = 125 °C		-	120	=	
Reverse recovery time	t _{rr}		$I_F = 8 \text{ A}$ $dI_F/dt = 600 \text{ A/}\mu\text{s}$ $V_R = 390 \text{ V}$	-	33	-	ns
Peak recovery current	I _{RRM}	T _J = 125 °C		-	12	=	Α
Reverse recovery charge	Q _{rr}			-	220	=	nC

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}		- 65	-	175	°C	
Thermal resistance,	- R _{thJC}		-	1.4	2		
junction to case (FULL-PAK)			-	3.4	4.3		
Thermal resistance, junction to ambient per leg	R _{thJA}	Typical socket mount	-	-	70	°C/W	
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-		
Weight			-	2.0	-	g	
Weight			-	0.07	-	OZ.	
Mounting torque			6.0		12	kgf · cm	
Mounting torque			(5.0)	_	(10)	(lbf · in)	
Marking device		Case style TO-220AC	8ETH06				
ivial fall g device	Case style TO-220 FULL-PAK		8ETH06FP				

www.vishay.com

Document Number: 94026 Revision: 24-Nov-08

Hyperfast Rectifier, 8 A FRED PtTM

Vishay High Power Products

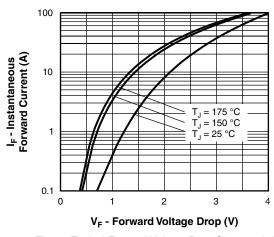


Fig. 1 - Typical Forward Voltage Drop Characteristics

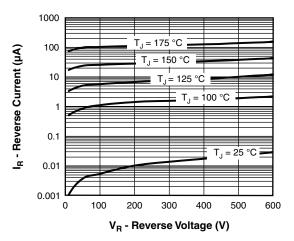


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

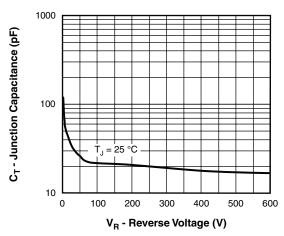


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

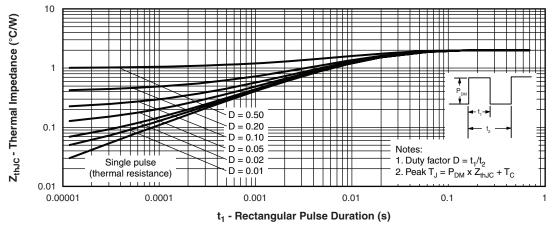


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Document Number: 94026 Revision: 24-Nov-08

8ETH06PbF, 8ETH06FPPbF

Vishay High Power Products

Hyperfast Rectifier, 8 A FRED PtTM

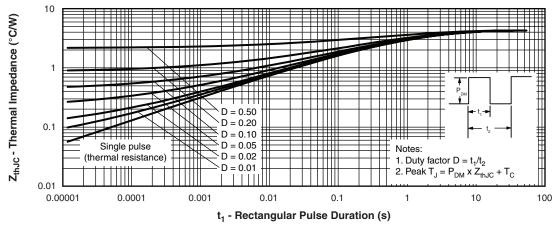


Fig. 5 - Maximum Thermal Impedance Z_{thJC} Characteristics (FULL-PAK)

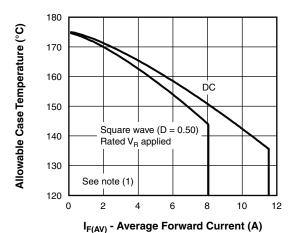


Fig. 6 - Maximum Allowable Case Temperature vs. Average Forward Current

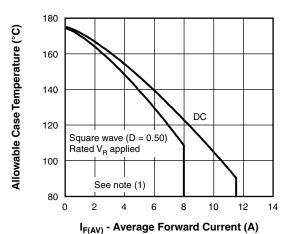


Fig. 7 - Maximum Allowable Case Temperature vs. Average Forward Current (FULL-PAK)

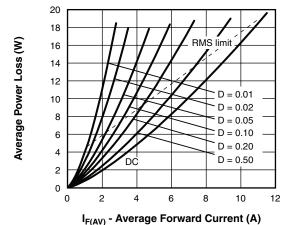


Fig. 8 - Forward Power Loss Characteristics

Note

 $\begin{array}{l} \text{(1)} \ \ \text{Formula used: } T_C = T_J - (Pd + Pd_{REV}) \ x \ R_{thJC}; \\ Pd = \text{Forward power loss} = I_{F(AV)} \ x \ V_{FM} \ \text{at } (I_{F(AV)}/D) \ \text{(see fig. 8)}; \\ Pd_{REV} = \text{Inverse power loss} = V_{R1} \ x \ I_R \ (1 - D); \ I_R \ \text{at } V_{R1} = \text{Rated } V_R \\ \end{array}$

Hyperfast Rectifier, 8 A FRED PtTM

Vishay High Power Products

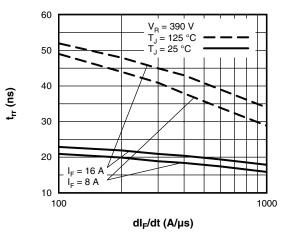


Fig. 9 - Typical Reverse Recovery Time vs. dI_F/dt

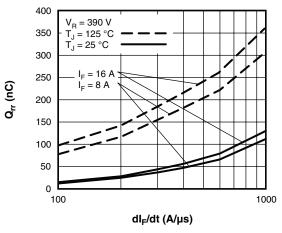


Fig. 10 - Typical Stored Charge vs. dl_F/dt

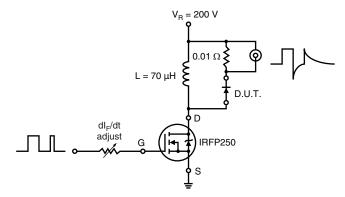
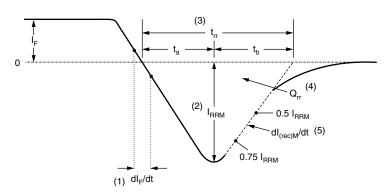



Fig. 11 - Reverse Recovery Parameter Test Circuit

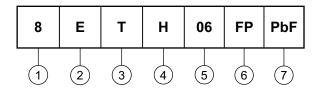
- (1) dl_F/dt rate of change of current through zero crossing
- (2) I_{RRM} peak reverse recovery current
- (3) t_{rr} reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through 0.75 I_{RBM} and 0.50 I_{RBM} extrapolated to zero current.
- (4) \mathbf{Q}_{rr} area under curve defined by \mathbf{t}_{rr} and \mathbf{I}_{RRM}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) dl_{(rec)M}/dt - peak rate of change of current during t_b portion of t_{rr}

Fig. 12 - Reverse Recovery Waveform and Definitions

8ETH06PbF, 8ETH06FPPbF


Vishay High Power Products

Hyperfast Rectifier, 8 A FRED PtTM

ORDERING INFORMATION TABLE

Device code

- 1 Current rating (8 = 8A)
- 2 E = Single diode
- 3 T = TO-220, D²PAK
- 4 H = Hyperfast recovery
- 5 Voltage rating (06 = 600 V)
- 6 • None = TO-220AC
 - FP = TO-220 FULL-PAK
- 7 • None = Standard production
 - PbF = Lead (Pb)-free

Tube standard pack quantity: 50 pieces

LINKS TO RELATED DOCUMENTS				
Dimensions	http://www.vishay.com/doc?95039			
Part marking information	http://www.vishay.com/doc?95045			

www.vishay.com

For technical questions, contact: diodes-tech@vishay.com

Document Number: 94026 Revision: 24-Nov-08

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1