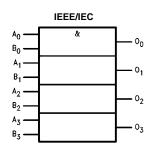
74F08 Quad 2-Input AND Gate

74F08 Quad 2-Input AND Gate

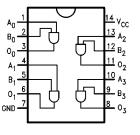
General Description

FAIRCHILD

SEMICONDUCTOR


This device contains four independent gates, each of which performs the logic AND function.

Ordering Code:


Order Number	Package Number	Package Description				
74F08SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow				
74F08SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74F08PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide				

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

	Din Nomoo	Description	U.L.	Input I _{IH} /I _{IL}	
	Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
	A _n , B _n	Inputs	1.0/1.0	20 µA/-0.6 mA	
	On	Outputs	50/33.3	-1 mA/20 mA	

74F08

Absolute Maximum Ratings(Note 1)

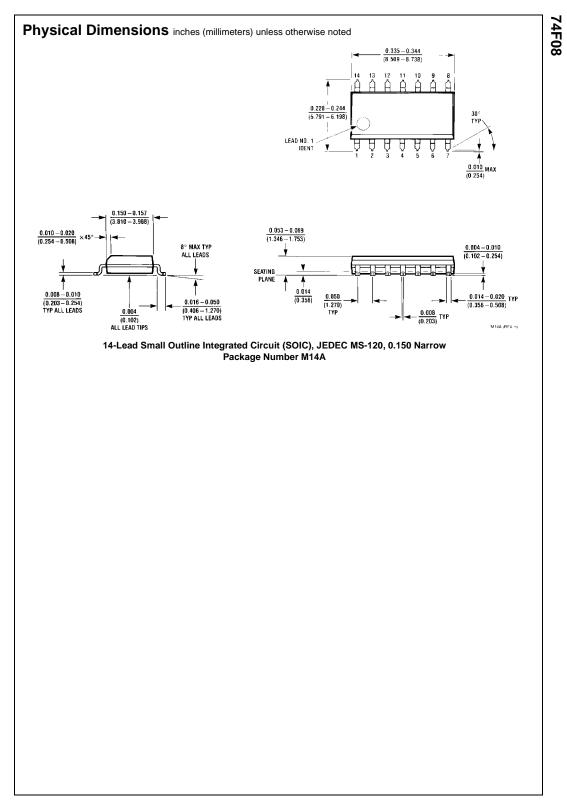
Storage Temperature	$-65^{\circ}C$ to $+150^{\circ}C$
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
ESD Last Passing Voltage (Min)	4000V

Recommended Operating Conditions

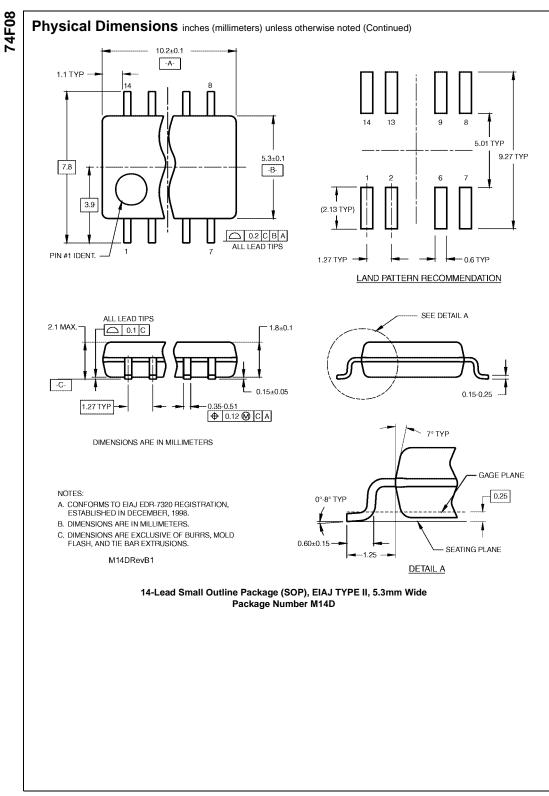
Free Air Ambient	Temperature
Supply Voltage	

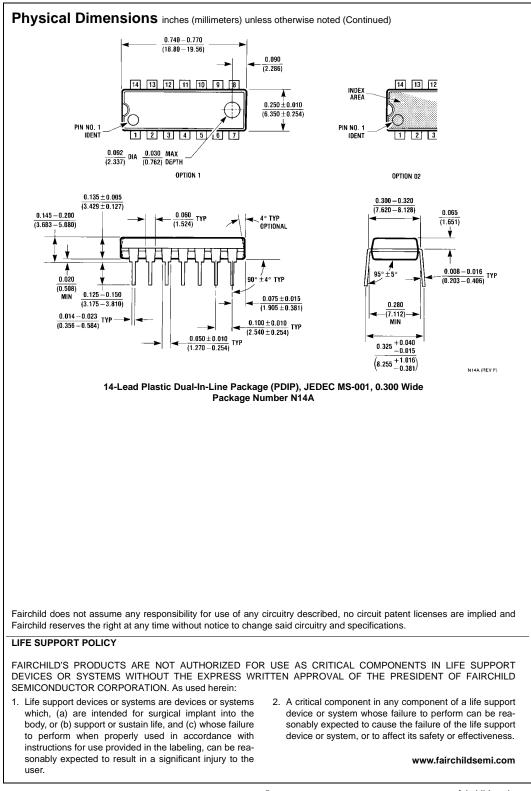
0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter	Min	Тур	Max	Units	Vcc	Conditions Recognized as a HIGH Signal	
V _{IH}	Input HIGH Voltage	2.0			V			
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH 10% V _{CC}	2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Voltage 5% V _{CC} Output LOW 10% V _{CC} Voltage 10% V _{CC}	2.7		0.5	V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OL} = 20 \text{ mA}$	
IIH	Input HIGH Current			5.0	μΑ	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μΑ	Max	V _{IN} = 7.0V	
ICEX	Output HIGH Leakage Current			50	μΑ	Max	V _{OUT} = V _{CC}	
V _{ID}	Input Leakage Test	4.75			v	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
IIL	Input LOW Current			-0.6	mA	Max	$V_{IN} = 0.5V$	
I _{OS}	Output Short-Circuit Current	-60		-150	mA	Max	$V_{OUT} = 0V$	
ICCH	Power Supply Current		5.5	8.3	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current		8.6	12.9	mA	Max	$V_{O} = LOW$	


AC Electrical Characteristics

Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Мах	Min	Max	1
t _{PLH}	Propagation Delay	3.0	4.2	5.6	2.5	7.5	3.0	6.6	ns
t _{PHL}	A _n , B _n to O _n	2.5	4.0	5.3	2.0	7.5	2.5	6.3	115

3

74F08 Quad 2-Input AND Gate

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com