Order Information

Model Name	Order Number	Package	Transport Media, Quantity	Marking Information
TP3232N	TP3232N-SR	16-Pin SOIC	Tape and Reel, 2,500	3232N
TP3232N	TP3232N-TR	16-Pin TSSOP	Tape and Reel, 3,000	3232N
TP3222N	TP3222N-SR	18-Pin SOIC	Tape and Reel, 3,000	3222N

Absolute Maximum Ratings Note 1

V _{CC} to GND0.3V to +6	ôV
V ₊ to GND (Note 1)0.3V to +7	7V
V- to GND (Note 1)+0.3V to -7	7V
V ₊ + V- (Note 1)+13	3V
Input Voltages	
TIN, EN, SHDN0.3V to +	6V
R_IN to GND±2	5V
Output Voltages	
T_OUT to GND±6.	.0V
R_OUT, R_OUTB0.3V to (VCC + 0.3	SV)
Short-Circuit Duration, T OUT to GNDContinue	ous

Recommended Operating Conditions Note 1

Temperature Range	40°C to +125°C
Supply Voltage (V _{CC})	3.3V or 5V
Rx Input Voltage	15V to +15V
Thermal Resistance, Θ_{JA} (Typical)	
16-Pin SOIC Package	100°C/W
16-Pin TSSOP Package	145°C/W
18-Pin SOIC Package	75°C/W
Maximum Junction Temperature (Plastic Package)	+150°C
Maximum Storage Temperature Range	65°C to +150°C

Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.

Electrical Characteristics

Test Conditions: $V_{CC} = 3.3V$ to 5.5V, TA = +25°C, C1 - C4 = 0.1μ F, Unless Otherwise Specified. Boldface limits apply over the operating temperature range

PARAMETER	CONDITION	s	TEMP. (°C)	MIN	TYP	MAX	UNITS
DC CHARACTERIS	STICS ($V_{CC} = +3.3V \text{ or } +5V,$	$T_A = +25^{\circ}C$)					
Supply Current	All R _{IN} open		25		0.2	0.3	mA
Supply Current in Power-Down	SHDN = GND TP3222N		25		1.0	3.0	μΑ
LOGIC AND TRANS	MITTER INPUTS AND RECEI	VER OUTPUTS					
Input Logic Threshold	TIN, EN, SHDN	$V_{CC} = 3.3V$	Full	0.53	0.63		V
Low		V _{CC} = 5.0V	Full	0.57	0.68		
Input Logic Threshold	TIN, EN, SHDN	V _{CC} = 3.3V	Full		0.84	0.95	V
High	TIIN, EIN, SHDIN	V _{CC} = 5.0V	Full		0.9	1.02	V
Input Leakage Current	TIN, EN, SHDN		Full		±1.2	±1.5	μA
Output Leakage Current	EN = V _{CC}	TP3222N	Full			±0.01	μА
Output Voltage Low	I _{OUT} = 1.6mA		Full		0.18	0.25	٧
Output Voltage High	I _{OUT} = -1.0mA		Full	V _{CC} - 0.2	V _{CC} - 0.15		V

PARAMETER	CONDITIONS		TEMP. (°C)	MIN	TYP	MAX	UNITS
RECEIVER INPUTS							
Input Voltage Range			25	-25		25	V
Input Threshold Low	V _{CC} = 3.3V		25	0.62	0.73		V
Input Thicshold Low	V _{CC} = 5V		25	0.62	0.73		V
Input Threshold High	V _{CC} = 3.3V		25		1.26	1.45	V
	V _{CC} = 5V		25		1.29	1.45	V
Input Hysteresis			25		0.5		V
Input Resistance			25	3	5	7	kΩ
TRANSMITTER OUT	PUTS						
Output Valtage Swing	V _{CC} = 3.3V		Full	±3.3			V
Output Voltage Swing	$V_{CC} = 5V$		Full	±5			V
Output Resistance	$V_{CC} = V + = V - = 0V$, transmitter	output = ±2V	25		50		Ω
Output Short-Circuit Current			Full			±60	mA
Output Leakage Current	$V_{OUT} = \pm 12V$, $V_{CC} = 0V$ or 3V to 5.5V, SHDN = GND		Full			±0.01	μА
TIMING CHARACTE	RISTICS				1		
Maximum Data Rate	$R_L = 3k\Omega$, $C_L = 1000pF$, one tra	insmitter, switching	Full	235	470		kbps
Receiver Propagation	Receiver input to receiver	t _{PHL}	25		0.3		μs
Delay	output, C _L = 150pF	t _{PLH}	25		0.3		μs
Receiver Output Enable Time	Normal Operation	TP3222N	25		100		ns
Receiver Output Disable time	Normal Operation	$f = 1kHz, R_L = 1k\Omega$	25		100		ns
Transmitter Skew	t _{PHL} to t _{PLH}		25		150		ns
Receiver Skew	t _{PHL} to t _{PLH}		25		100		ns
Transition Region	V_{CC} = 3.3V, R_L = 3kΩ to 7kΩ, measured from 3V to -3V or -3V to 3V	$C_L = 150pF \text{ to}$ 2500pF	25	13.5	14	16.5	V/µs
Slew Rate		$C_L = 150pF \text{ to}$ 1000pF	25	13.9	14	16.5	V/µs
RS-232 Pins (T1OUT,	Human Body Model		0.5				14) /
T2OUT) ESD			25		±8		kV
RS-232 Pins (R1IN, R2IN) ESD	Human Body Model		25		±2		kV

www.3peakic.com.cn Rev.B.01

Test Circuits and Waveforms

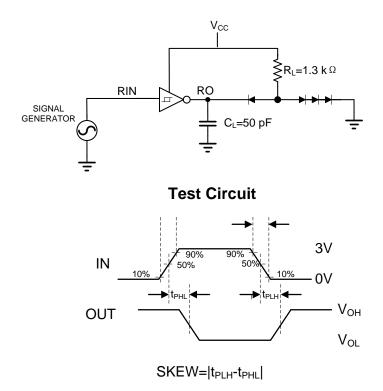


Figure 1. Receiver Test Circuit and Waveforms for tPHL and tPLH Measurements

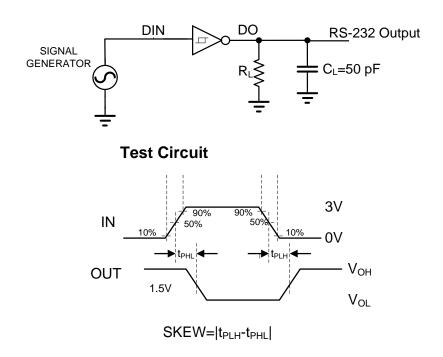


Figure 2. Driver Test Circuit and Waveforms for tPHL and tPLH Measurements

Pin Functions

PIN	FUNCTION
VCC	System power supply input (3.0V to 5.5V).
V+	Internally generated positive transmitter supply (+5.5V).
V-	Internally generated negative transmitter supply (-5.5V).
GND	Ground connection.
C1+	External capacitor (voltage doubler) is connected to this lead.
C1-	External capacitor (voltage doubler) is connected to this lead.
C2+	External capacitor (voltage inverter) is connected to this lead.
C2-	External capacitor (voltage inverter) is connected to this lead.
TIN	TTL/CMOS compatible transmitter Inputs.
TOUT	RS-232 level (nominally ±5.5V) transmitter outputs.
RIN	RS-232 compatible receiver inputs.
ROUT	TTL/CMOS level receiver outputs.
EN	Active low receiver enable control; doesn't disable ROUTB outputs.
SHDN	Active low input to shut down transmitters and on-board power supply, to place device in low
GIIDIN	power mode.

Detailed Description

Charge-Pump Voltage Converter

The integrated charge pump in TP3232N/TP3222N generates negative power supply from a single supply VCC. The charge pump requires a flying capacitors (C1, C2) and a reservoir capacitors (C3, C4) to generate V- supplies(Figure1). At the same time a decoupling capacitor shall be applied between VCC and ground. Typical value for the flying capacitor is 0.1uF. Typical value of the decoupling capacitor shall be same as or larger than that of the flying capacitor. The TP3232N/TP3222N's charge pump could provides output voltages of +5V and -5V under single +5V VCC.

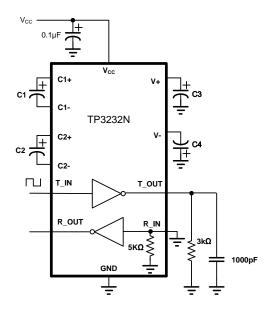


Figure 1. Slew-Rate Test Circuits

www.3peakic.com.cn Rev.B.01 5

RS-232 Transmitters

The transmitters are inverting level translators that convert TTL/CMOS-logic levels to $\pm 5V$ EIA/TIA-232-compliant levels. The TP3232N/TP3222N transmitters guarantee a 470kbps data rate with worst-case loads of $3k\Omega$ in parallel with 1000pF, providing compatibility with PC-to-PC communication software. Transmitters can be paralleled to drive multiple receivers or mice. The TP3222N transmitters are disabled and the outputs are forced into a high-impedance state when the device is in shutdown mode (SHDN = GND). The TP3232N/TP3222N's transmitter inputs have a $400k\Omega$ active positive-feedback resistor, allowing unused inputs to be left unconnected.

RS-232 Receivers

The receivers convert RS-232 signals to CMOS-logic output levels. The TP3222N receivers have inverting three-state outputs. Drive EN high to place the receiver(s) into a high impedance. Receivers can be either active or inactive in shutdown (Table 1).

SHDN	EN	T_OUT	R-OUT	R_OUTB
0	0	High impedance	Active	Active
0	1	High impedance	High impedance	Active
1	0	Active	Active	Active
1	1	Active	High impedance	Active

TABLE 1 Shutdown and Enable Control Truth Table

TP3222N

Supply current falls to less than $1\mu A$ in shutdown mode(SHDN = low). When shut down, the device's charge pumps are shut off, V- is pulled to ground, and the transmitter outputs are disabled (high impedance). The time required to recover from shutdown is typically $80\mu s$.

Applications Information

Capacitor Selection

The capacitor type used for C1–C4 is not critical for proper operation; polarized or nonpolarized capacitors can be used. The charge pump requires 0.1µF capacitors for 3.3V operation. Increasing the capacitor values (e.g., by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, and C4 can be increased without changing C1's value. However, do not increase C1 without also increasing the values of C2, C3, C4, and CBYPASS to maintain the proper ratios (C1 to the other capacitors). When using the minimum required capacitor values, make sure the capacitor value does not degrade excessively with temperature. If in doubt, use capacitors with a larger nominal value. The capacitor's equivalent series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-.

Rev.B.01 www.3peakic.com.cn

6

Power-Supply Decoupling

In most circumstances, a $0.1\mu F$ VCC bypass capacitor is adequate. In applications sensitive to power-supply noise, use a capacitor of the same value as charge pump capacitor C1. Connect bypass capacitors as close to the IC as possible.

Operation Down to 3V

Transmitter outputs meet EIA/TIA-562 levels of ±3V with supply voltages as low as 3V.

From Shutdown

As they become active, the two transmitter outputs are shown going to opposite RS-232 levels (one transmitter input is high; the other is low). Each transmitter is loaded with $3k\Omega$ in parallel with 2500pF. The transmitter outputs display no ringing or undesirable transients as they come out of shutdown. Note that the transmitters are enabled about 80 μ s after power up.

High Data Rates

The TP3232N/TP3222N maintain the RS-232 ±3V minimum transmitter output voltage even at high data rates. All transmitters were driven simultaneously at 470kbps into RS-232 loads in parallel with 5000pF. For Figure 4, a single transmitter was driven at 333kbps, and all transmitters were loaded with an RS-232 receiver in parallel with 1000pF.

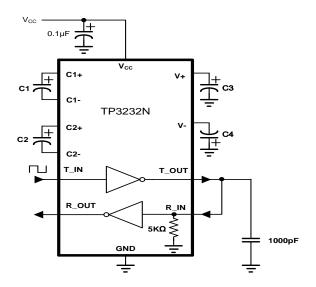
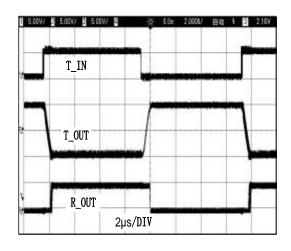
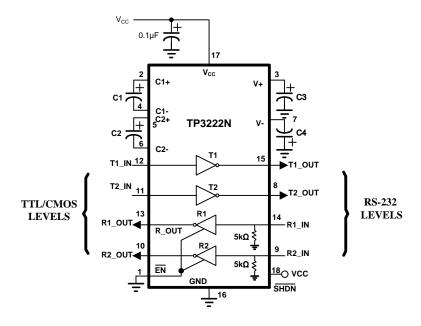
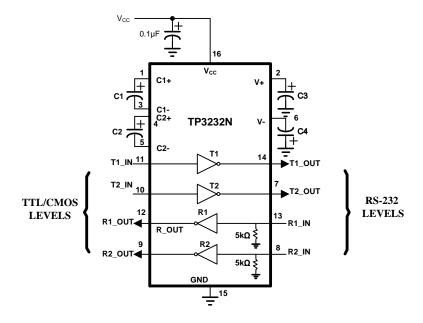


Figure 4. Loopback Test Circuit


Figure 5. Loopback Test At 333kbps

www.3peakic.com.cn Rev.B.01

Typical Application Circuits

TP3222N

TP3232N

Rev.B.01 www.3peakic.com.cn

8

Typical Performance Curves vcc = 5V, TA = +25°C.

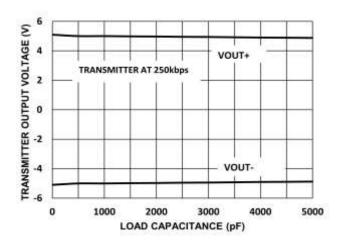


Figure 6. Transmitter Output Voltage vs Load

Capacitance

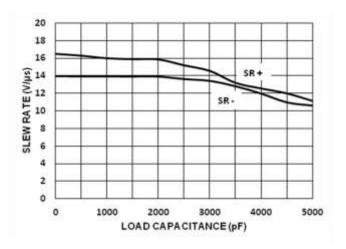


Figure 7. Slew Rate vs Load Capacitance

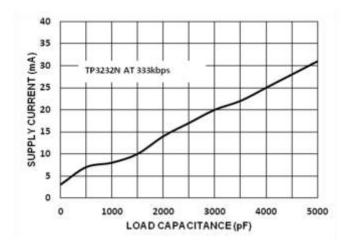


Figure 8. Supply Current vs Load Capacitance When Transmitting Data

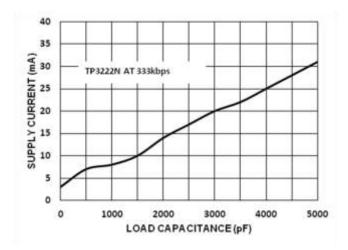
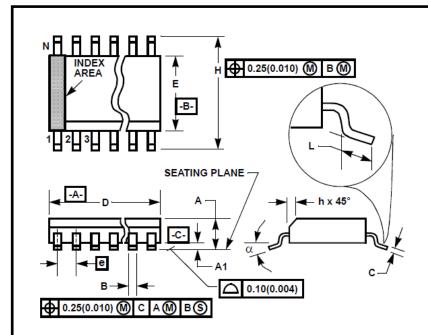
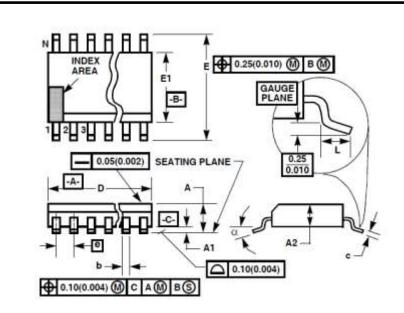



Figure 9. Supply Current vs Load Capacitance When Transmitting Data

www.3peakic.com.cn Rev.B.01

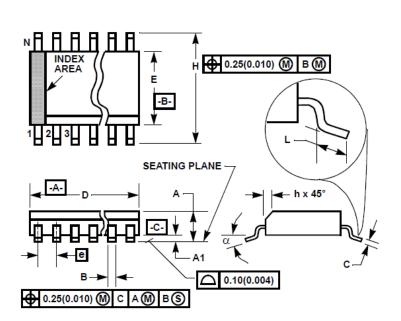
Package Outline Dimensions


SOIC-16

	Dimensions				
Symbol	In Millimeters				
	MIN	NOM	MAX		
Α	1.35	1.60	1.75		
A1	0.10	0.15	0.25		
В	0.33	0.42	0.51		
С	0.19	0.22	0.25		
D	9.8	9.9	10		
Е	3.8	3.9	4		
Н	5.8	6.0	6.2		
h	0.25	0.38	0.5		
L	0.4	0.835	1.27		
N	16				
е	1.27 BSC				
α	0°	4°	8°		

Package Outline Dimensions

TSSOP-16



	Dimensions				
Symbol	In Millimeters				
	MIN	NOM	MAX		
Α	-	0.55	1.10		
A1	0.05	0.10	0.15		
A2	0.85	0.90	0.95		
b	0.19	0.25	0.30		
С	0.09	0.15	0.20		
D	4.90	5.00	5.10		
E1	4.30	4.40	4.50		
E	6.25	6.38	6.5		
L	0.50	0.60	0.70		
N	16				
е	0.65 BSC				
α	0°	4°	8°		

www.3peakic.com.cn Rev.B.01 11

Package Outline Dimensions

SOIC-18

Symbol	Dimensions In Millimeters				
	MIN	NOM	MAX		
Α	2.35	2.5	2.65		
A1	0.10	0.20	0.30		
В	0.33	0.42	0.51		
С	0.23	0.26	0.32		
D	11.35	11.55	11.75		
E	7.40	7.50	7.60		
Н	10.00	10.32	10.65		
h	0.25	0.50	0.75		
L	0.40	0.84	1.27		
N	18				
е	1.27 BSC				
α	0°	4°	8°		