PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION	
	SOT-23-5	-40°C to +125°C	SGM8049-1XN5G/TR	SVAXX	Tape and Reel, 3000	
CCM2040.4	SC70-5	-40°C to +125°C	SGM8049-1AXC5G/TR	SZAXX	Tape and Reel, 3000	
SGM8049-1	SC70-5	-40°C to +125°C	SGM8049-1BXC5G/TR	SUEXX	Tape and Reel, 3000	
TDFN-2×2-6L		-40°C to +125°C	SGM8049-1XTDI6G/TR	SZC XXXX	Tape and Reel, 3000	
0.01400.40.0	SOT-23-8	-40°C to +125°C	SGM8049-2XN8G/TR	SVBXX	Tape and Reel, 3000	
SGM8049-2	SOIC-8	-40°C to +125°C	SGM8049-2XS8G/TR	SGM 80492XS8 XXXXX	Tape and Reel, 2500	
SGM8049-4	TSSOP-14	-40°C to +125°C	SGM8049-4XTS14G/TR	SGM80494 XTS14 XXXXX	Tape and Reel, 4000	

MARKING INFORMATION

NOTE: XX = Date Code. XXXX = Date Code. XXXX = Date Code and Vendor Code.SOT-23-5/SC70-5/SOT-23-8SOIC-8/TSSOP-14

<u>YYY X X</u>

Date Code - Month

— Date Code - Year — Serial Number XXXXX

Uendor Code
Uendor Code - Week
United Transmission
United Transmis

TDFN-2×2-6L

YYY — Serial Number XXXX Date Code - Week Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

1.8V, 2.5µA, 120kHz, Rail-to-Rail I/O Operational Amplifiers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, +V _S to -V _S 6	V
Signal Input Terminals, Voltage	
(-V _S) - 0.3V to (+V _S) + 0.3V	V
Signal Input Terminals, Current±10m/	4
Output Short-Circuit Current	4
Junction Temperature+150°C	С
Storage Temperature Range65°C to +150°C	С
Lead Temperature (Soldering, 10s)+260°C	С
ESD Susceptibility	
HBM6000\	V
MM400	V
CDM	V

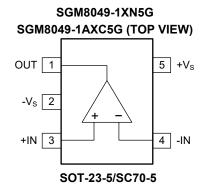
RECOMMENDED OPERATING CONDITIONS

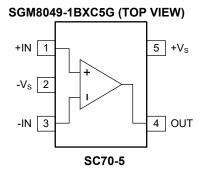
Input Voltage Range	1.8V to 5.5V
Operating Temperature Range	40°C to +125°C

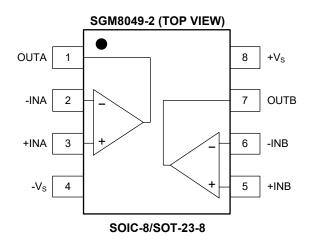
OVERSTRESS CAUTION

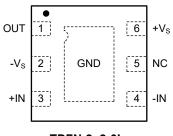
Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

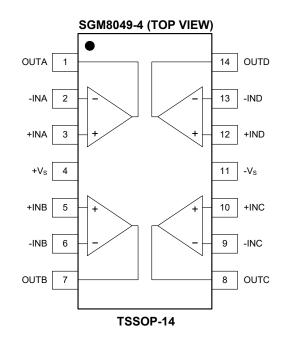
ESD SENSITIVITY CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


DISCLAIMER

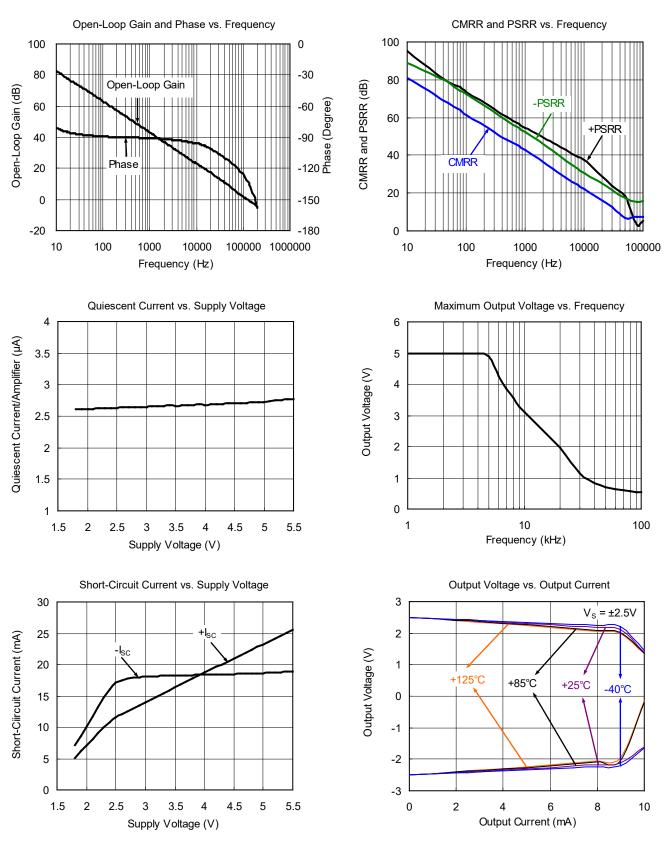

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.


PIN CONFIGURATIONS



SGM8049-1 (TOP VIEW)

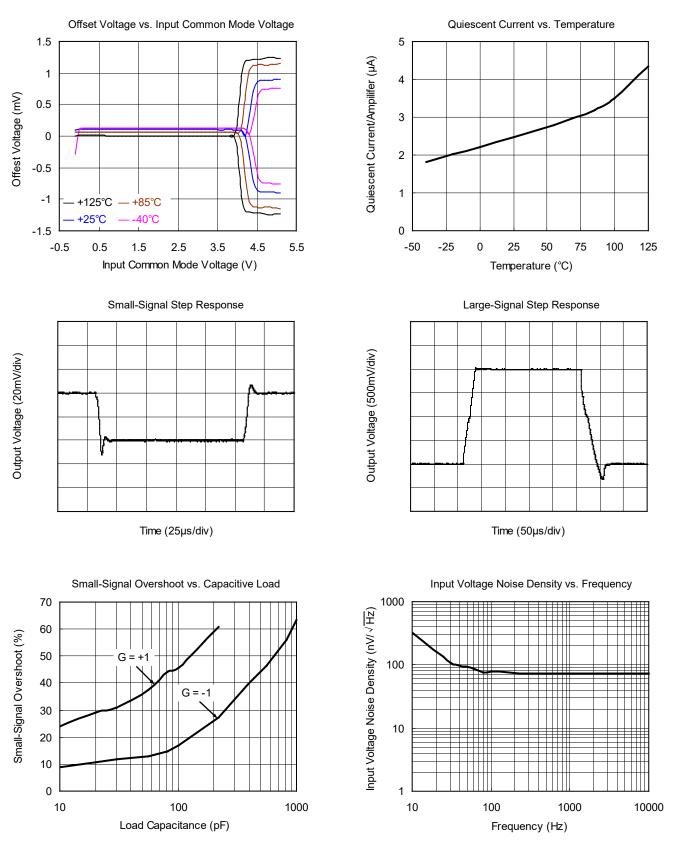
TDFN-2×2-6L


ELECTRICAL CHARACTERISTICS

(At T_A = +25°C, V_S = 1.8V to 5.5V, R_L = 25k Ω connected to $V_S/2$ and $V_{CM} <$ (+ V_S) - 1.2V, unless otherwise noted.)

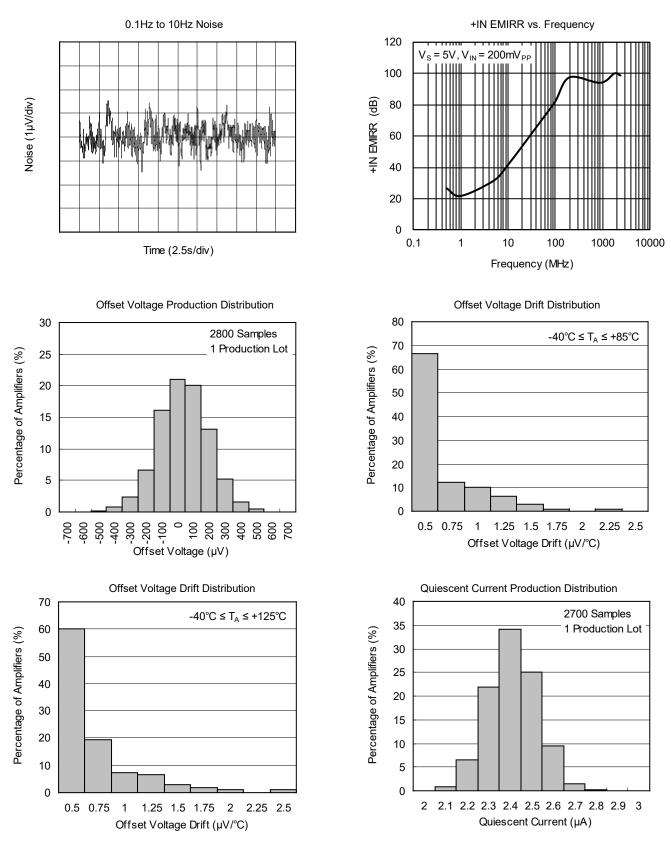
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
Input Characteristics		·	····			•		
		V _S = 5V		0.2	0.85			
Input Offset Voltage	Vos	-40°C ≤ T _A ≤ +125°C			1	mV		
Input Bias Current	Ι _Β	$V_{\rm S}$ = 5V, $V_{\rm CM} \le V_{\rm S}/2$		±1		pА		
Input Offset Current	l _{os}	V _S = 5V		±1		pА		
Input Common Mode Voltage Range	V _{CM}		(-V _s) - 0.1		(+V _s) + 0.1	V		
		-V _S < V _{CM} < (+V _S) - 1.2V	81	100				
Common Mode Rejection Ratio	CMRR	-40°C ≤ T _A ≤ +85°C	80			dB		
		-40°C ≤ T _A ≤ +125°C	75					
		$V_{S} = 5V, R_{L} = 25k\Omega,$ 100mV < $V_{OUT} < (+V_{S}) - 100mV$	100	118				
Open-Loop Voltage Gain		$-40^{\circ}C \le T_A \le +125^{\circ}C$	98			٩D		
	A _{OL}	$V_{S} = 5V, R_{L} = 5k\Omega,$ 500mV < V_{OUT} < (+ V_{S}) - 500mV	100	116		dB		
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$	98			1		
	ΔV _{os} /ΔT	$-40^{\circ}C \leq T_A \leq +85^{\circ}C$		0.5				
Input Offset Voltage Drift	ΔV _{OS} /Δ1	$-40^{\circ}C \le T_A \le +125^{\circ}C$		0.6		µV/°C		
Output Characteristics								
		$R_L = 25k\Omega$		5	14	m)/		
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			15.5			
Output Voltage Swing from Rail		$R_L = 5k\Omega$		25	40	mV		
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$			46			
Output Short-Circuit Current	Isc	V _S = 5V		20		mA		
Power Supply		·	····					
Operating Voltage Range	Vs		1.8		5.5	V		
		V _S = 5.5V, I _{OUT} = 0mA		2.5	4.2	μΑ		
Quiescent Current/Amplifier	Ι _Q	$-40^{\circ}C \le T_A \le +125^{\circ}C$			6.5			
Denne Onerla Dele stien Detie	DODD	V _S = 1.8V to 5.5V, V _{CM} = 0.6V		2.5	12			
Power Supply Rejection Ratio	PSRR	$-40^{\circ}C \leq T_A \leq +125^{\circ}C$			14	μV/V		
Dynamic Performance (C _{LOAD} = 30pF)							
Gain-Bandwidth Product	GBP			120		kHz		
Slew Rate	SR	G = +1		0.08		V/µs		
Overload Recovery Time		$V_{IN} \times G > V_S$		25		μs		
Turn-On Time	t _{on}			0.2		ms		
Noise								
Input Voltage Noise		f = 0.1Hz to 10Hz		3.5		μV _{PF}		
Input Voltage Noise Density	en	f = 1kHz		75		nV/√H		
Input Current Noise Density	in	f = 1kHz		0.2		pA/√ਜ		

TYPICAL PERFORMANCE CHARACTERISTICS


At T_A = +25°C, V_S = 5V and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)


At T_A = +25°C, V_S = 5V and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.

SG Micro Corp

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, V_S = 5V and R_L = 25k Ω connected to $V_S/2$, unless otherwise noted.

SG Micro Corp

APPLICATION INFORMATION

The SGM8049-1/2/4 operational amplifiers minimize power consumption without compromising bandwidth or noise. Typical values of power supply rejection ratio (PSRR), common mode rejection ratio (CMRR), and open-loop gain (A_{OL}) are 100dB or better.

When designing for ultra low power applications, choose system components carefully. To minimize current consumption, select large value resistors. Any resistors will react with stray capacitance in the circuit and the input capacitance of the operational amplifiers. These parasitic RC combinations can affect the stability of the overall system. A feedback capacitor may be required to assure stability and limit overshoot or gain peaking.

Good layout practice mandates the use of a $0.1 \mu F$ bypass capacitor placed closely across the supply pins.

Operating Voltage

SGM8049-1/2/4 operational amplifiers are fully specified and tested from 1.8V to 5.5V or $\pm 0.9V$ to $\pm 2.75V$.

Input Common Mode Voltage Range

The input common mode voltage range of the SGM8049-1/2/4 is from $(-V_S) - 0.1V$ to $(+V_S) + 0.1V$. This rail-to-rail input is achieved using a complementary input stage. CMRR is specified from the negative rail to 1.2V below the positive rail. Between $(-V_S) - 0.1V$ to $(+V_S) + 0.1V$, the amplifier operates with higher offset voltage because of the transition region of the input stage.

Protecting Inputs from Over-Voltage

Normally, input currents are 1pA. However, a large voltage input (greater than 500mV beyond the supply rails) can cause excessive current to flow in or out of the input pins. Therefore, as well as keeping the input voltage below the maximum rating, it is also important to limit the input current to less than 10mA. This limiting is easily accomplished with an input voltage resistor, as shown in Figure 2.

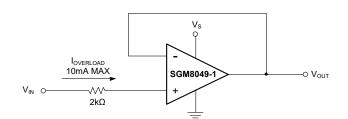


Figure 2. Input Current Protection for Voltages Exceeding the Supply Voltage

Noise

Although micro-power amplifiers frequently have high wideband noise, the SGM8049-1/2/4 offer excellent noise performance. Resistors should be chosen carefully because the SGM8049-1/2/4 have only $3.5\mu V_{PP}$ of 0.1Hz to 10Hz noise, and $75nV/\sqrt{Hz}$ of wideband noise; otherwise, they can become the dominant source of noise.

Capacitive Load and Stability

Follower configurations with load capacitance in excess of 30pF can produce extra overshoot and ringing in the output signal. Increasing the gain enhances the ability of the amplifier to drive greater capacitive loads. In unity-gain configurations, capacitive load drive can be improved by inserting a small (10 Ω to 20 Ω) resistor, R_s, in series with the output, as shown in Figure 3. This resistor significantly reduces ringing while maintaining direct current (DC) performance for purely capacitive loads. However, if there is a resistive load in parallel with the capacitive load, a voltage divider is created, introducing a DC error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio R_s/R_L, and is generally negligible.

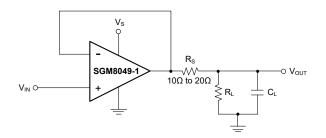


Figure 3. Series Resistor in Unity-Gain Buffer Configuration Improves Capacitive Load Drive

SG Micro Corp

APPLICATION INFORMATION (continued)

In unity-gain inverting configuration, phase margin can be reduced by the reaction between the capacitance at the operational amplifier input and the gain setting resistors. Best performance is achieved by using smaller valued resistors. However, when large valued resistors cannot be avoided, a small (4pF to 6pF) capacitor, C_{FB} , can be inserted in the feedback, as shown in Figure 4. This configuration significantly reduces overshoot by compensating the effect of capacitance, C_{IN} , which includes the amplifier input capacitance and printed circuit board (PCB) parasitic capacitance.

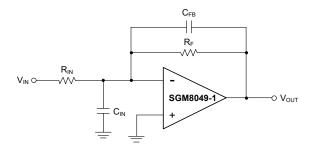
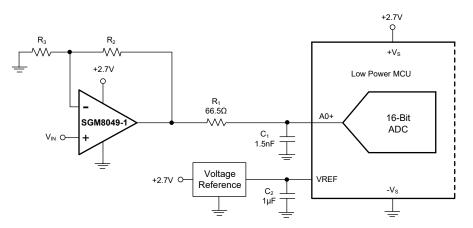
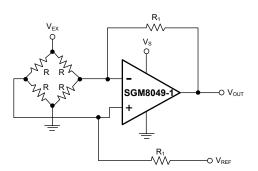
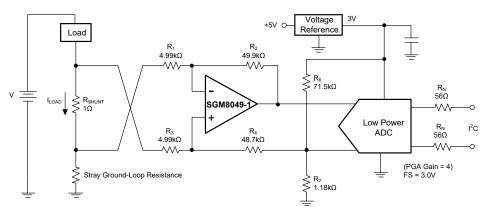
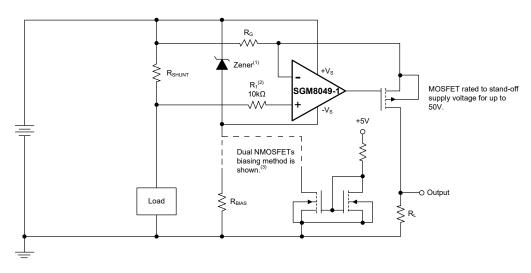




Figure 4. Improving Stability for Large R_F and R_{IN}

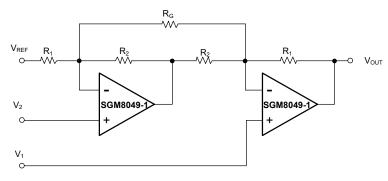
Figure 5 through Figure 9 illustrate some low power application examples.


Figure 6. Single Operational Amplifier Bridge Amplifier

APPLICATION INFORMATION (continued)

NOTE: 1% resistors provide adequate common mode rejection at small ground-loop errors.


Figure 7. Low-side Current Shunt Monitor

NOTES:

1. Zener rated for operational amplifier supply capability (that is, 5.6V for SGM8049-1/2/4).

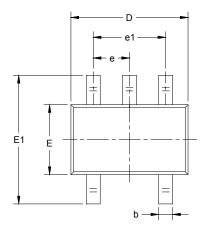
- 2. Current-limit resistor.
- 3. Choose Zener biasing resistor or dual NMOSFETs.

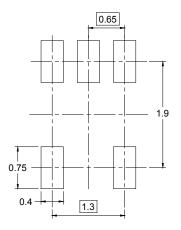
Figure 8. High-side Current Measurement

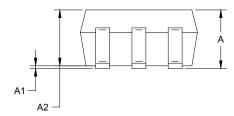
 $V_{OUT} = (V_1 - V_2) (1 + R_1/R_2 + 2R_1/R_G) + V_{REF}$

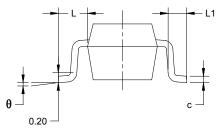
Figure 9. Two Operational Amplifiers Low Power Instrumentation Amplifier

REVISION HISTORY

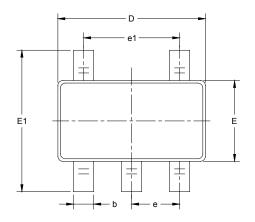

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

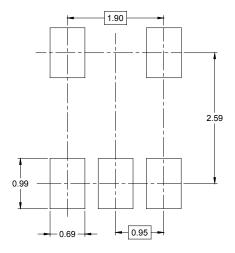

AUGUST 2017 - REV.A to REV.A.1

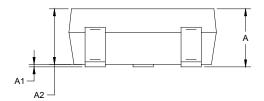

AUGUST 2017 – REV.A to REV.A.1	Page
Added +IN EMIRR vs. Frequency	8
Changes from Original (NOVEMBER 2015) to REV.A	Page

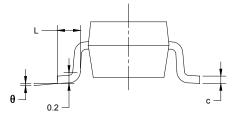


SC70-5

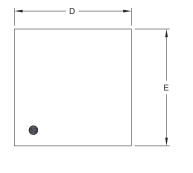


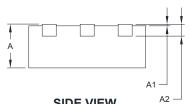


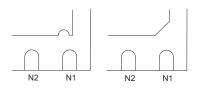

Symbol	-	nsions meters	Dimensions In Inches		
	MIN MAX		MIN	MAX	
A	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.150	.150 0.350		0.014	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200 0.079		0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.65	TYP	0.026	6 TYP	
e1	1.300) BSC	0.051	BSC	
L	0.525 REF		0.021	REF	
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	



SOT-23-5

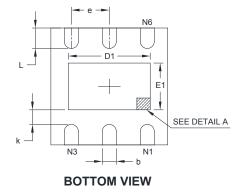


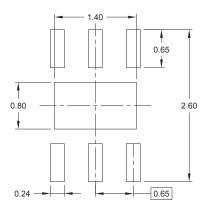

Symbol		nsions meters	Dimensions In Inches		
	MIN MAX		MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500 0.012		0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037	BSC	
e1	1.900 BSC		0.075	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	


TDFN-2×2-6L

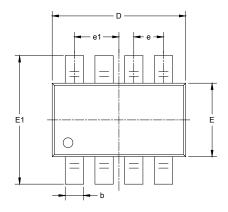
TOP VIEW

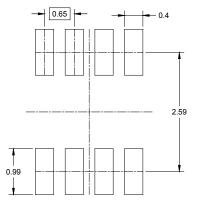
SIDE VIEW

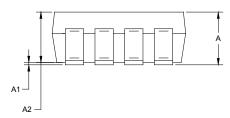

DETAIL A

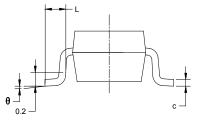

Pin #1 ID and Tie Bar Mark Options

NOTE: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

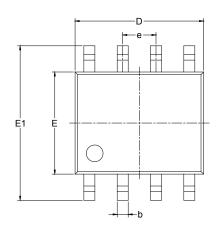

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.050 0.000		
A2	0.203	3 REF	0.008 REF		
D	1.900	2.100	0.075	0.083	
D1	1.100	1.450	0.043	0.057	
E	1.900	2.100	0.075	0.083	
E1	0.600	0.850	0.024	0.034	
k	0.200	D MIN	0.008	3 MIN	
b	0.180	0.300	0.007	0.012	
е	0.650	0.650 TYP		6 TYP	
L	0.250	0.450	0.010	0.018	

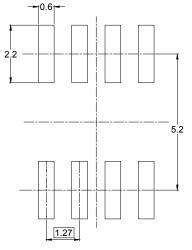


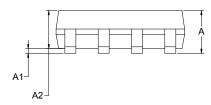


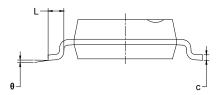


SOT-23-8

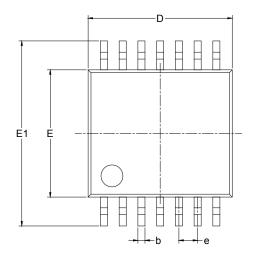


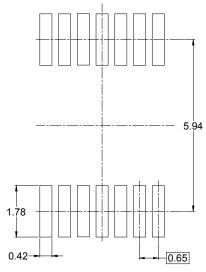



Symbol		nsions meters	Dimensions In Inches		
,	MIN MAX		MIN	MAX	
А	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300 0.500		0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.650	BSC	0.026 BSC		
e1	0.975 BSC		0.038	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

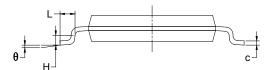


SOIC-8

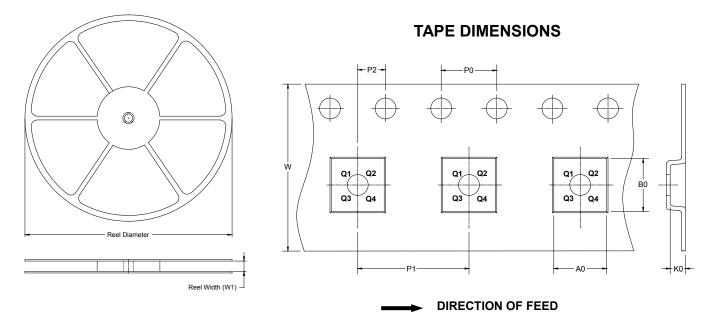





Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MIN MAX		MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350 1.550		0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	


SG Micro Corp

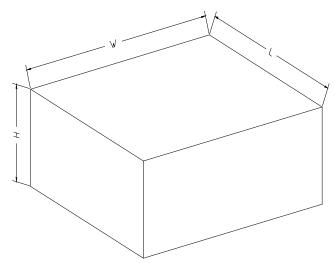
TSSOP-14



Symbol	-	nsions imeters	Dimensions In Inches		
	MIN MAX		MIN	MAX	
A		1.200		0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.050	0.031	0.041	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D	4.860	5.100	0.191	0.201	
E	4.300	4.500	0.169	0.177	
E1	6.250	6.550	0.246	0.258	
е	0.650 BSC		0.026	BSC	
L	0.500	0.700	0.02	0.028	
н	0.25	TYP	0.01	TYP	
θ	1°	7°	1°	7°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SC70-5	7″	9.5	2.25	2.55	1.20	4.0	4.0	2.0	8.0	Q3
SOT-23-5	7"	9.5	3.20	3.20	1.40	4.0	4.0	2.0	8.0	Q3
TDFN-2×2-6L	7″	9.5	2.30	2.30	1.10	4.0	4.0	2.0	8.0	Q1
SOT-23-8	7″	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
TSSOP-14	13″	12.4	6.95	5.60	1.20	4.0	8.0	2.0	12.0	Q1

KEY PARAMETER LIST OF TAPE AND REEL

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18]_
13″	386	280	370	5	DD0002

