

Pin Descriptions

Pin Name	Type	Pin No	Description	
SRC & SRC#	Input	2, 3	0.7V Differential SRC input from PI6C410 clock synthesizer	
OE_0 & OE_3	Input	8, 21	3.3V LVTTL input for enabling outputs, active high. OE_0 for OUT0 / OUT0# OE_3 for OUT3 / OUT3#	
OE_INV	Input	25	3.3V LVTTL input for inverting the OE, SRC_STOP# and PWRDWN# pins. When 0 = same stage When 1 = OE_0, OE_3, SRC_STOP#, PWRDWN# inverted.	
OUT[0:3] & OUT[0:3]#	Output	6, 7, 9, 10, 19, 20, 22, 23	0.7V Differential outputs	
PLL/BYPASS#	Input	12	3.3V LVTTL input for selecting fan-out of PLL operation.	
SCLK	Input	13	SMBus compatible SCLOCK input	
SDA	I/O	14	SMBus compatible SDATA	
IREF	Input	26	External resistor connection to set the differential output current	
SRC_STOP#	Input	16	3.3V LVTTL input for SRC stop, active low	
PLL_BW#	Input	17	3.3V LVTTL input for selecting the PLL bandwidth	
PWRDWN#	Input	15	3.3V LVTTL input for Power Down operation, active low	
V_{DD}	Power	1, 5, 11, 18, 24	3.3V Power Supply for Outputs	
VSS	Ground	4	Ground for Outputs	
VSS_A	Ground	27	Ground for PLL	
VDD_A	Power	28	3.3V Power Supply for PLL	

Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	1	0	0/1

Data Protocol

1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	Slave Addr	R/W	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	 Data Byte N - 1	Ack	Stop bit

Notes:

1. Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

Data Byte 0: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Outputs Mode 0 = Divide by 2 1 = Normal	RW	1 = Normal	OUT[0:3], OUT[0:3]#	NA
1	PLL/BYPASS# 0 = Fanout 1 = PLL	RW	1 = PLL	OUT[0:3], OUT[0:3]#	NA
2	PLL Bandwidth 0 = High Bandwidth, 1 = Low Bandwidth	RW	1 = Low	OUT[0:3], OUT[0:3]#	NA
3	Reserved				NA
4	Reserved				NA
5	Reserved				NA
6	SRC_STOP# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA
7	PWRDWN# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA

Data Byte 1: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	OUTPUTS enable	RW	1 = Enabled	OUT0, OUT0#	NA
2	$ \begin{array}{c} 1 = \text{Enabled} \\ 0 = \text{Disabled} \end{array} $	RW	1 = Enabled	OUT1, OUT1#	NA
3	Reserved				NA
4	Reserved				NA
5	OUTPUTS enable	RW	1 = Enabled	OUT2, OUT2#	NA
6	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT3, OUT3#	NA
7	Reserved				NA

Data Byte 2: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Reserved				NA
1	Allow control of OUTPUTS with	RW	0 = Free running	OUT0, OUT0#	NA
2	assertion of SRC_STOP# 0 = Free running 1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT1, OUT1#	NA
3	Reserved				NA
4	Reserved				NA
5	Allow control of OUTPUTS with	RW	0 = Free running	OUT2, OUT2#	NA
6	assertion of SRC_STOP# 0 = Free running 1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT3, OUT3#	NA
7	Reserved				NA

Data Byte 3: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0		RW			
1		RW			
2		RW			
3	Reserved	RW			
4	Reserved	RW			
5		RW			
6		RW			
7		RW			

Data Byte 4: Pericom ID Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
0		R	0	NA	NA
1		R	0	NA	NA
2		R	0	NA	NA
3	Davissam ID	R	0	NA	NA
4	Pericom ID	R	0	NA	NA
5		R	1	NA	NA
6		R	0	NA	NA
7		R	0	NA	NA

Functionality

PWRDWN#	OUT	OUT#	SRC_Stop#	OUT	OUT#
1	Normal	Normal	1	Normal	Normal
0	$I_{REF} \times 2$ or Float	Low	0	$I_{REF} \times 6$ or Float	Low

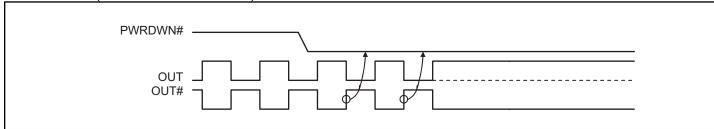


Figure 1. Power down sequence

Power Down (PWRDWN# De-assertion)

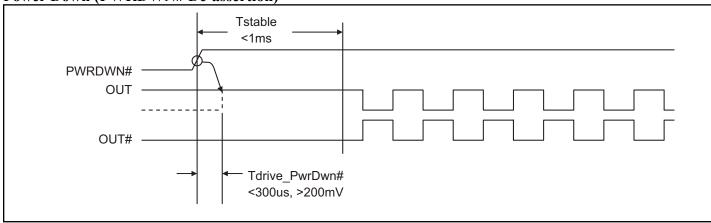


Figure 2. Power down de-assert sequence

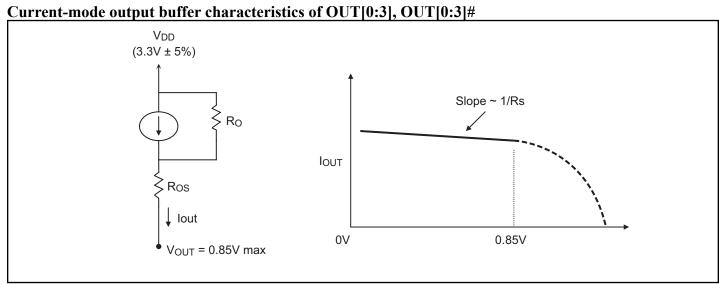


Figure 9. Simplified diagram of current-mode output buffer

Differential Clock Buffer characteristics

Symbol	Minimum	Maximum
R_{O}	3000Ω	N/A
R _{OS}	unspecified	unspecified
$ m V_{OUT}$	N/A	850mV

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I _{OUT}	$V_{DD} = 3.30 \pm 5\%$	$R_{REF} = 475\Omega \ 1\%$ $I_{REF} = 2.32 \text{mA}$	Nominal test load for given configuration	-12% I _{nominal}	+12% I _{NOMINAL}

Note:

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = $V_{DD}/(3xRr)$	Output Current	V _{OH} @ Z
100Ω (100Ω differential ≈ 15% coupling ratio)	$R_{REF} = 475\Omega \ 1\%,$ $I_{REF} = 2.32mA$	$I_{OH} = 6 \times I_{REF}$	0.7V @ 50

^{1.} I_{NOMINAL} refers to the expected current based on the configuration of the device.

Absolute Maximum Ratings (Over operating free-air temperature range)

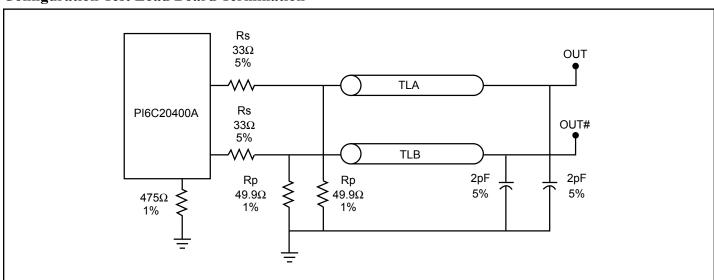
Symbol	Parameters	Min.	Max.	Units
$V_{\mathrm{DD_A}}$	3.3V Core Supply Voltage	-0.5	4.6	
V_{DD}	3.3V I/O Supply Voltage	-0.5	4.6 V	
V_{IH}	Input High Voltage		4.6	
$V_{ m IL}$	Input Low Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V _{ESD}	ESD Protection	2000		V

Note:

DC Electrical Characteristics (V_{DD} = 3.3±5%, V_{DD A} = 3.3±5%)

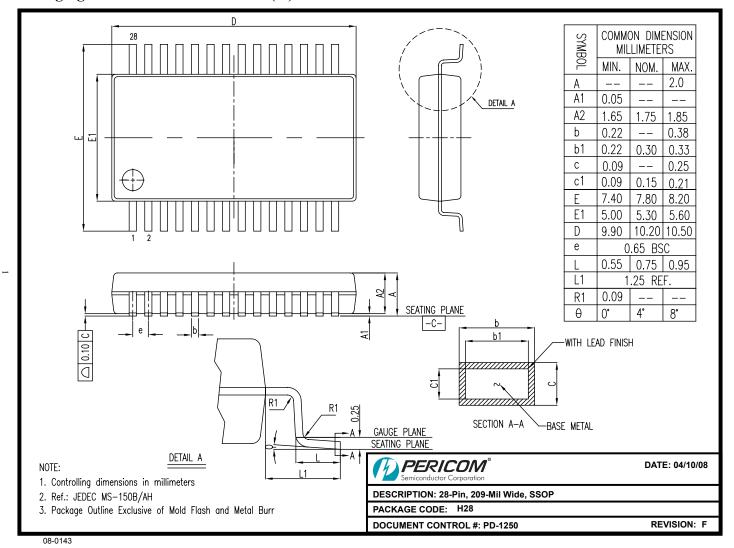
Symbol	Parameters	Condition	Min.	Max.	Units	
$V_{\mathrm{DD_A}}$	3.3V Core Supply Voltage		3.135	3.465	V	
$V_{ m DD}$	3.3V I/O Supply Voltage		3.135	3.465		
$V_{ m IH}$	3.3V Input High Voltage	$V_{ m DD}$	2.0	$V_{\rm DD} + 0.3$		
$ m V_{IL}$	3.3V Input Low Voltage		$V_{SS}-0.3$	0.8		
${ m I}_{ m IL}$	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μΑ	
$ m V_{OH}$	3.3V Output High Voltage	$I_{OH} = -1 \text{mA}$	2.4		V	
$V_{ m OL}$	3.3V Output Low Voltage	$I_{OL} = 1 \text{mA}$		0.4		
T	0.4.411.1.0	$I_{OH} = 6 \times I_{REF},$ $I_{REF} = 2.32 \text{mA}$	12.2		mA	
I_{OH}	Output High Current			15.6		
C_{IN}	Input Pin Capacitance		2	5	pF	
$C_{ m OUT}$	Output Pin Capacitance			6		
L_{PIN}	Pin Inductance			7	nН	
I _{DD(BYPASS)}	Power Supply Current (PLL Bypass)	$V_{DD} = 3.465V, F_{CPU} = 100MHz$		90		
I_{DD}	Donner Committee Comment	$V_{DD} = 3.465V$	Bypass mode	100	mA	
	Power Supply Current	$F_{CPU} = 100MHz$	PLL mode	130		
I_{SS}	Power Down Current	Driven outputs		40		
I_{SS}	Power Down Current	Tristate outputs		12		
$T_{\mathbf{A}}$	Ambient Temperature		-40	85	°C	

^{1.} Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

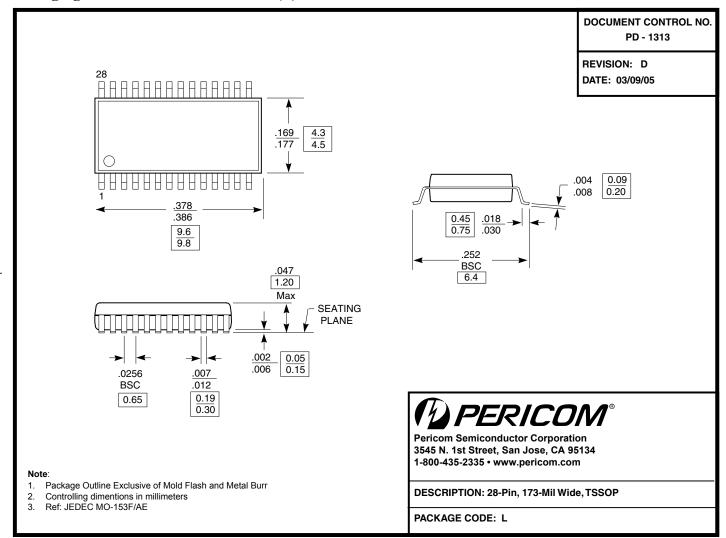

AC Switching Characteristics ($V_{DD} = 3.3\pm5\%$, $V_{DD_A} = 3.3\pm5\%$)

Symbol	Parameters	Min	Max.	Units	Notes
E	PLL Mode	95	105	MHz	
F _{IN}	Bypass Mode	100	400	MHz	
T _{rise} / T _{fall}	Rise and Fall Time (measured between 0.175V to 0.525V)	175	700	ps	2
DT _{rise} / DT _{fall}	Rise and Fall Time Variation		125	ps	2
T_{pd}	PLL Mode		±250	ps	
	Non-PLL Mode	2.5	6.5	ns	
T _{jitter}	Cycle – Cycle Jitter		50	ps	3, 4
V _{HIGH}	Voltage High including overshoot	660	1150	mV	2
$V_{ m LOW}$	Voltage Low including undershoot	-300		mV	2
V _{cross}	Absolute crossing point voltages	250	550	mV	2
DV _{cross}	Total Variation of Vcross over all edges		140	mV	2
T _{DC}	Duty Cycle	45	55	%	3
T _{jadd}	Additive RMS phase jitter for PCIe 2.0	<0	1	ps	5

Notes:


- 1. Test configuration is $R_s = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.
- 2. Measurement taken from Single Ended waveform.
- 3. Measurement taken from Differential waveform.
- 4. Measurement taken using M1 data capture analysis tool.
- 5. Additive jitter is calculated from input and output RMS phase jitter by using PCIe 2.0 filter. $(T_{jadd} = \sqrt{(output\ jitter)^2 (input\ jitter)^2}$

Configuration Test Load Board Termination



Packaging Mechanical: 28-Pin SSOP (H)

Packaging Mechanical: 28-Pin TSSOP (L)

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6C20400AHE	HE	28-pin, 209-mil wide, SSOP, Pb-Free and Green
PI6C20400ALE	LE	28-pin, 173-mil wide, TSSOP, Pb-Free and Green

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com