	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	-200	_	—	V	VGS = 0V, ID = -1.0 mA
$\Delta BV_{DSS}/\Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	_	-0.22	—	V/°C	Reference to 25°C, I _D = -1.0 mA
RDS(on)	Static Drain-to-Source	_	—	0.80		VGS = -10V, ID = -2.4A ⁽⁴⁾
	On-State Resistance	—	—	1.68	Ω	VGS = -10V, ID = -4.0A
VGS(th)	Gate Threshold Voltage	-2.0	—	-4.0	V	$V_{DS} = V_{GS}$, $I_{D} = -250 \mu A$
gfs	Forward Transconductance	2.2	—	_	S (U)	VDS > -15V, IDS = -2.4A ④
IDSS	Zero Gate Voltage Drain Current	—	—	-25		VDS = 0.8 x Max Rating, VGS = 0V
				-250	μΑ	VDS = 0.8 x Max Rating
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	-100	nA	VGS = -20V
IGSS	Gate-to-Source Leakage Reverse	—	_	100		VGS = 20V
Qg	Total Gate Charge	14.7	_	34.8		VGS = -10V, ID = -4.0A
Qgs	Gate-to-Source Charge	0.8	—	7.0	nC	VDS = Max. Rating x 0.5
Qgd	Gate-to-Drain ("Miller") Charge	5.0	—	17		see figures 6 and 13
td(on)	Turn-On Delay Time	—	—	50		VDD = -100V, ID = -4.0A,
tr	Rise Time	—	_	100	ns	$R_{G} = 7.5\Omega$, $VGS = -10V$
^t d(off)	Turn-Off Delay Time	—	—	100	115	
tf	Fall Time	—	—	80		see figure 10
LD	Internal Drain Inductance	—	5.0	_	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.
LS	Internal Source Inductance	_	15.0		пн	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.
C _{iss}	Input Capacitance		700			$V_{GS} = 0V, V_{DS} = -25V$
C _{OSS}	Output Capacitance	—	200	—	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	_	40			see figure 5

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Test Conditions
IS	Continuous Source Current (I	Body Diode)	—	_	-4.0	Α	Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body I	Diode) ①		_	-16		integral reverse p-n junction rectifier.
VSD	Diode Forward Voltage		_	—	-6.0	V	$T_j = 25^{\circ}C$, $I_S = -4.0A$, $V_{GS} = 0V$ (4)
trr	Reverse Recovery Time		—	—	400	ns	Tj = 25°C, IF = -4.0A, di/dt ≤ -100A/μs
QRR	Reverse Recovery Charge		—	—	4.0	μC	V _{DD} ≤ -50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by L_{S} + L_{D} .					

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
RthJC	Junction-to-Case	—	—	5.0		
R _{th} JA	Junction-to-Ambient		_	175	K/W	Typical socket mount

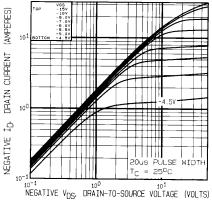


Fig. 1 — Typical Output Characteristics $T_C = 25^{\circ}C$

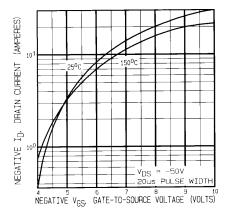


Fig. 3 — Typical Transfer Characteristics

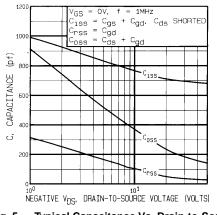


Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

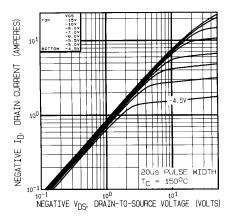


Fig. 2 — Typical Output Characteristics $T_C = 150^{\circ}C$

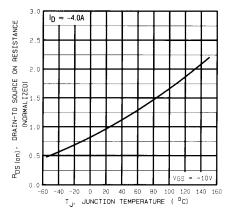


Fig. 4 — Normalized On-Resistance Vs.Temperature

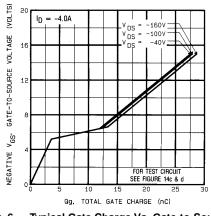
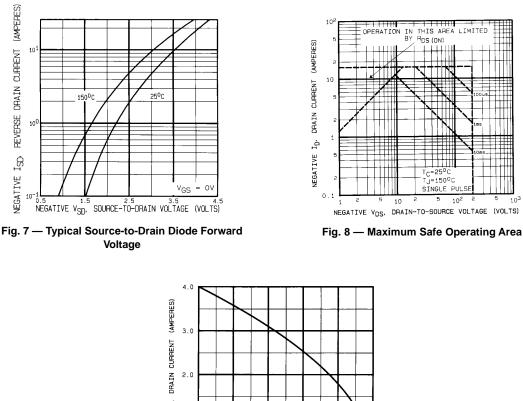
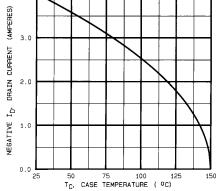




Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage

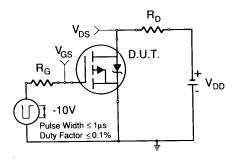
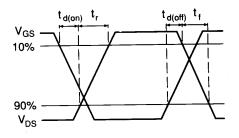



Fig. 10a — Switching Time Test Circuit

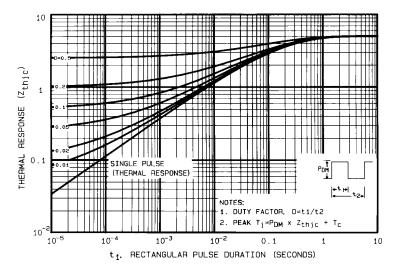


Fig. 11 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

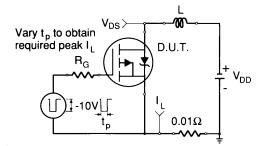


Fig. 12a — Unclamped Inductive Test Circuit

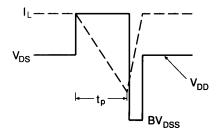


Fig. 12b — Unclamped Inductive Waveforms

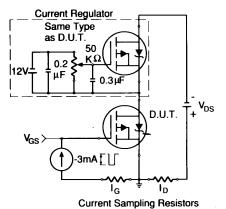


Fig. 13a — Gate Charge Test Circuit

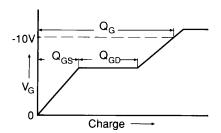
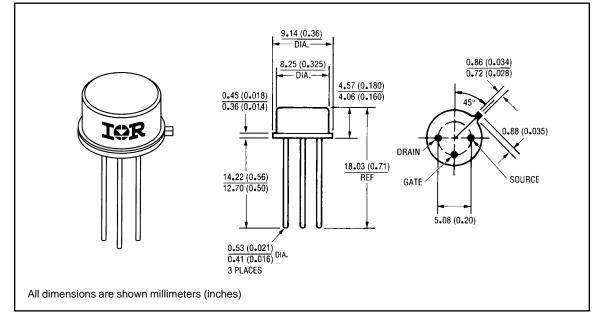



Fig. 13b — Basic Gate Charge Waveform

- Repetitive Rating; Pulse width limited by maximum junction temperature. (see figure 11)
- $\label{eq:VDD} \begin{array}{l} \textcircled{0}{2} & \textcircled{V}_{DD} = \text{-}50\text{V}, \text{ Starting } \textbf{T}_{J} = 25^{\circ}\text{C}, \\ \hline \textbf{E}_{AS} = [0.5 * \texttt{L} * (I_{\texttt{L}}^2) * [\texttt{BV}_{DSS}/(\texttt{BV}_{DSS}\text{-}\texttt{V}_{DD})] \\ \hline \textbf{Peak } \textbf{I}_{\texttt{L}} = \text{-}4.0\text{A}, \ \textbf{V}_{GS} = \text{-}10\text{V}, \ 25 \leq \texttt{R}_{G} \leq 200\Omega \\ \end{array}$

- 3 ISD \leq -4.0A, di/dt \leq -120A/µs,
- $V_{DD} \le BV_{DSS}, T_J \le 150^{\circ}C$
- ④ Pulse width \leq 300 μ s; Duty Cycle \leq 2%
- 5 K/W = °C/W W/K = W/°C

Case Outline and Dimensions — TO-205AF (TO-39)

International

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 10/96