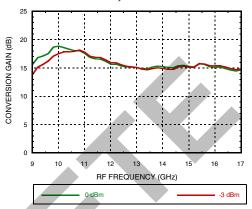
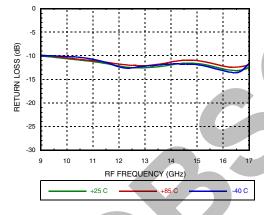
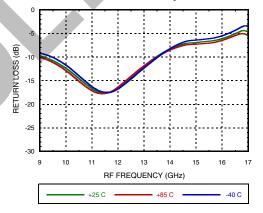


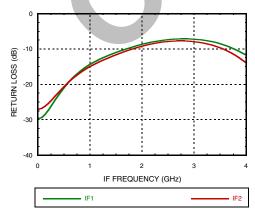
RoHS V

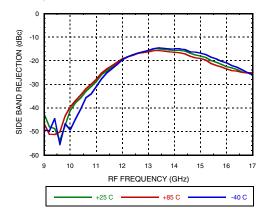

GaAs MMIC I/Q UPCONVERTER 10 - 16 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 2000 MHz


Conversion Gain, USB vs. Temperature


Conversion Gain, USB vs. LO Drive


RF Return Loss vs. Temperature

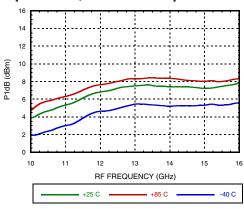

LO Return Loss vs. Temperature

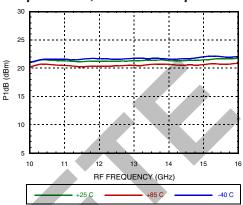
IF Return Loss [1]

Side Band Rejection, USB vs. Temperature

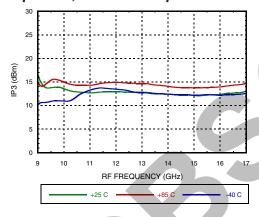
[1] Data taken without external IF 90° hybrid

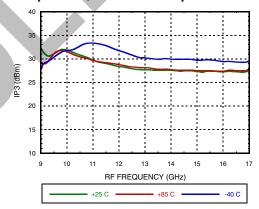
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

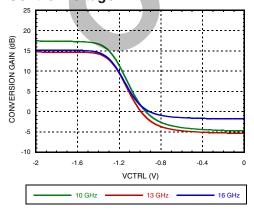

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

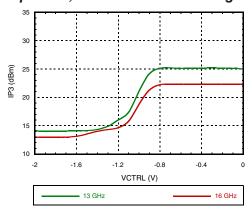


Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 2000 MHz


Input P1dB, USB vs. Temperature

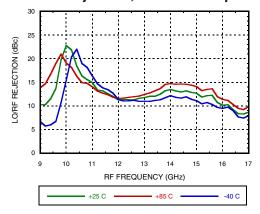

Output P1dB, USB vs. Temperature

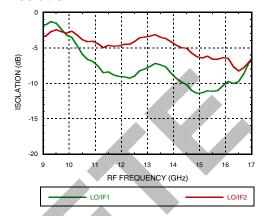

Input IP3, USB vs. Temperature


Output IP3, USB vs. Temperature

Conversion Gain, USB vs. Control Voltage

Input IP3, USB vs. Control Voltage

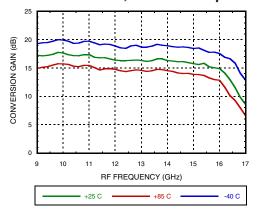


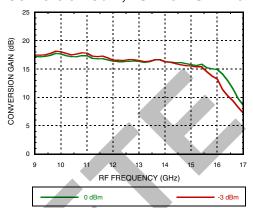

GaAs MMIC I/Q UPCONVERTER 10 - 16 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 2000 MHz

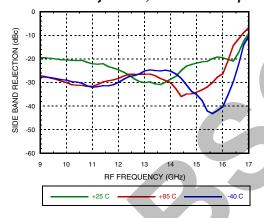
LO / RF Rejection, USB vs. Temperature

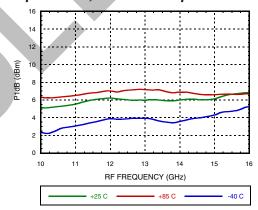
Isolation

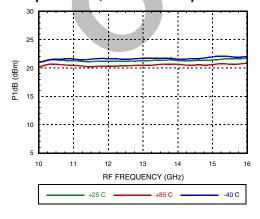


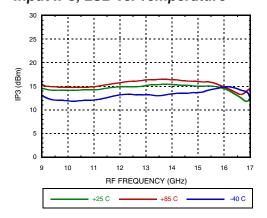


Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 2000 MHz


Conversion Gain, LSB vs. Temperature


Conversion Gain, LSB vs. LO Drive

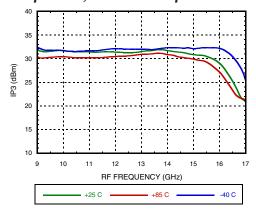

Sideband Rejection, LSB vs. Temperature

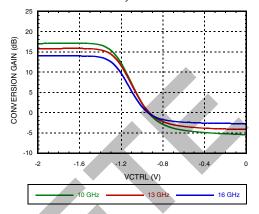

Input P1dB, LSB vs. Temperature

Output P1dB, LSB vs. Temperature

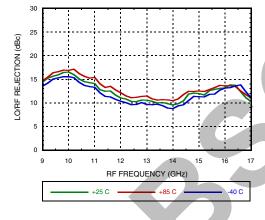
Input IP3, LSB vs. Temperature

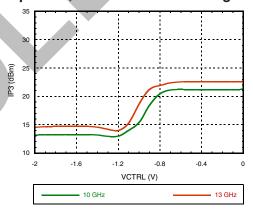
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




GaAs MMIC I/Q UPCONVERTER 10 - 16 GHz

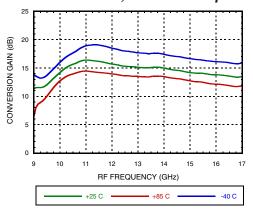
Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 2000 MHz

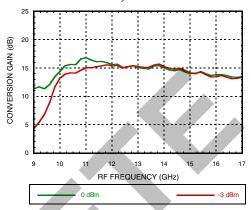

Output IP3, LSB vs. Temperature


Conversion Gain, LSB vs. Control Voltage

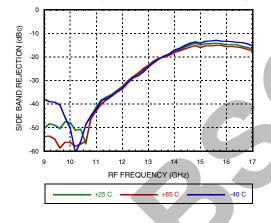
LO/RF Rejection, LSB

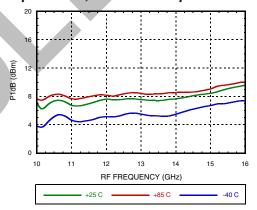
Input IP3, LSB vs. Control Voltage

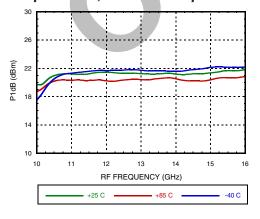


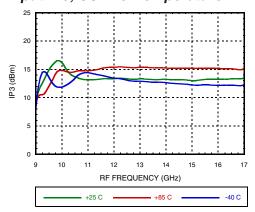


Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 3000 MHz


Conversion Gain, USB vs. Temperature

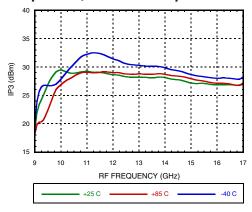

Conversion Gain, USB vs. LO Drive

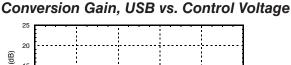

Sideband Rejection, USB vs. Temperature

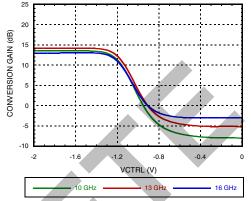

Input P1dB, USB vs. Temperature

Output P1dB, USB vs. Temperature

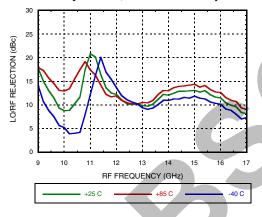
Input IP3, USB vs. Temperature

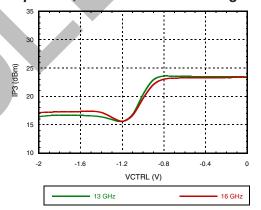




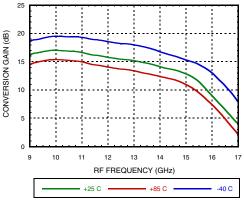

GaAs MMIC I/Q UPCONVERTER 10 - 16 GHz

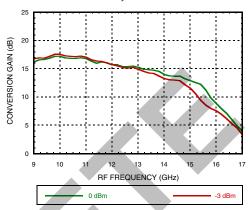
Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 3000 MHz


Output IP3, USB vs. Temperature

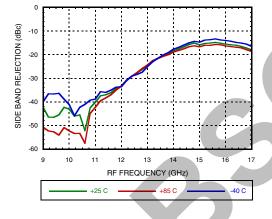


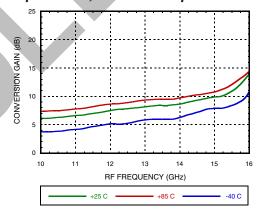
LO/RF Rejection, USB vs. Temperature

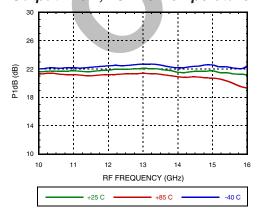

Input IP3, USB vs. Control Voltage

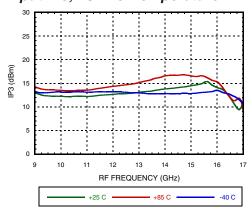

GaAs MMIC I/Q UPCONVERTER 10 - 16 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 3000 MHz


Conversion Gain, LSB vs. Temperature


Conversion Gain, LSB vs. LO Drive

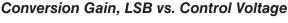

Sideband Rejection, LSB vs. Temperature

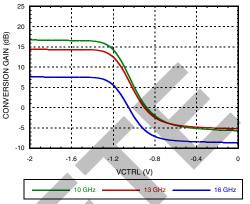

Input P1dB, LSB vs. Temperature

Output P1dB, LSB vs. Temperature

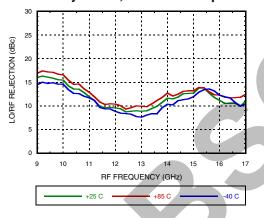
Input IP3, LSB vs. Temperature

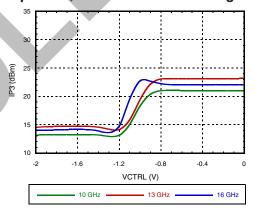
MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMI




GaAs MMIC I/Q UPCONVERTER 10 - 16 GHz

Data Taken as SSB Upconverter with External IF 90° Hybrid, IF = 3000 MHz


Output IP3, LSB vs. Temperature



LO/RF Rejection, LSB vs. Temperature

Input IP3, USB vs. Control Voltage

GaAs MMIC I/Q UPCONVERTER 10 - 16 GHz

MxN Spurious Outputs [1][2]

	nLO					
mIF	0	1	2	3	4	
0	х	-6.4	-40.2	xx	xx	
1	-54.2	0	-47.2	-73.2	xx	
2	-40.2	-47.2	-45.0	-82.2	xx	
3	-67.2	-49.2	-74.2	-75.2	xx	
4	-69.2	-78.2	-74.2	-85.2	xx	

IF = 2.0 GHz @ -10 dBm LO = 16.9 GHz @ 0 dBm

MxN Spurious Outputs [1][2]

	nLO				
mIF	0	1	2	3	4
0	0	-5.0	-46.3	-63.3	xx
1	-50.3	0	-45.3	-58.3	xx
2	-42.3	-40.3	-46.3	-63.3	xx
3	-64.3	-49.3	-70.2	-68.3	xx
4	-71.3	-76.3	-78.3	-89.3	xx

IF = 2.6 GHz @ -10 dBm LO = 15 GHz @ 0 dBm

MxN Spurious Outputs [1][3]

	nLO				
mIF	0	1	2	3	4
0	х	-13	-35.1	-68.1	xx
1	-74.1	0	-52.1	-58.1	xx
2	-38.1	-42.1	-46.1	-71.1	xx
3	-87.1	-50.1	-79.1	-75.1	xx
4	-67.1	-94.1	-77.1	xx	xx

IF = 2 GHz @ -10 dBm LO = 12.9 GHz @ 0 dBm

MxN Spurious Outputs [1][3]

		nLO			
mIF	0	1	2	3	4
0	х	-8.0	-21.8	-54.8	-66.8
-1.	-51.8	0	-39.8	-60.8	-87.8
-2	-41.8	-40.8	-46.8	-67.8	-93.8
-3	-66.8	-52.8	-71.8	-69.8	-91.8
-4	-70.8	-77.8	-79.8	-86.8	xx

IF = 2 GHz @ -10 dBm LO = 9.1 GHz @ 0 dBm

Absolute Maximum Ratings

IF Input	+20 dBm
LO Input	+10 dBm
Channel Temperature	175 °C
Continuous Pdiss (T = 85 °C) (derate 18.3 mW/°C above 85 °C)	1.65 W
Thermal Resistance (channel to ground paddle)	54.6 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

- [1] Data taken without external IF 90° hybrid
- [2] All values in dBc below IF power level (LO IF) LSB
- [3] All values in dBc above IF power level (LO + IF) USB

GaAs MMIC I/Q UPCONVERTER 10 - 16 GHz

Outline Drawing

BOTTOM VIEW 0.197±.005 PIN 32 .013 [0.32] $[5.00 \pm .13]$ 32 25 PIN 1 \Box 1 24 \Box H924 D d 0.197±.005 [5.00±.13] D XXXX \Box \Box \Box 8 17 .138 [3.50] **EXPOSED** SQUARE LOT NUMBER **GROUND** 0.044 [1.12] .161 [4.10] PADDLE MAX SEATING PLANE NOTES: 1. PACKAGE BODY MATERIAL: ALUMINA 2. LEAD AND GROUND PADDLE PLATING: 30 - 80 MICROINCHES ا ا GOLD OVER 50 MICROINCHES MINIMUM NICKLE 3. DIMENSIONS ARE IN INCHES [MILLIMETERS] 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE 5. PACKAGE WARP SHALL NOT EXCEED 0.05 mm DATUM

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC924LC5	Alumina, White	Gold over Nickel	MSL3 [1]	H924 XXXX

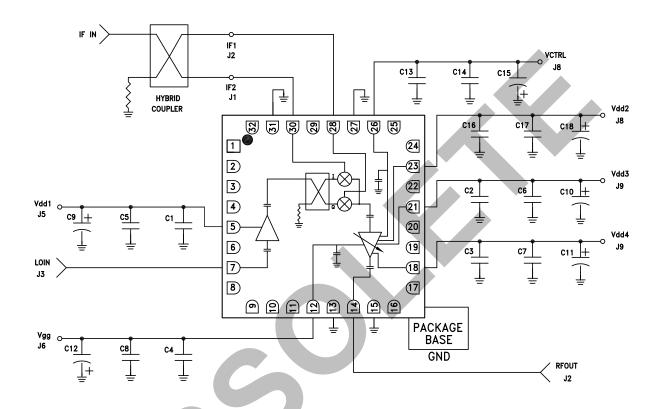
^[1] Max peak reflow temperature of 260 °C

6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED

TO PCB RF GROUND

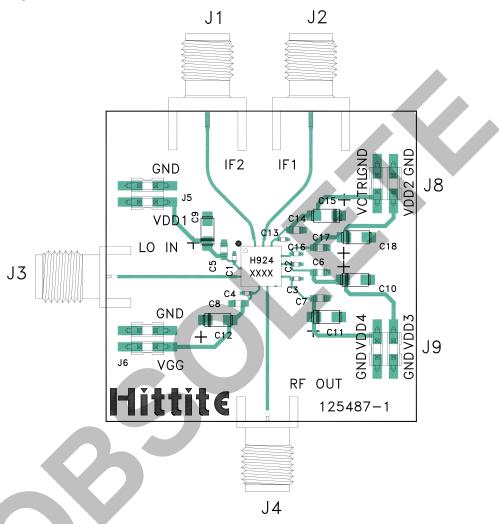
^{[2] 4-}Digit lot number XXXX

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1 - 4, 6, 9 - 11, 16, 17, 19, 20, 22, 24, 25, 29, 32	N/C	No connection required. The pins are not connected inter- nally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
5	Vdd1	Power supply voltage for LO amplifier. See application circuit for required external components.	OVdd1
7	LOIN	This pin is AC coupled and matched to 50 Ohms.	LOINO
8, 13, 15, 27, 31	GND	These pins and package bottom must be connected to RF/DC ground.	⊖ GND =
12	Vgg	Gate control for RF amplifier, please follow "MMIC Amplifier Biasing Procedure" application note. See application circuit for required external components.	Vgg \\ \frac{1}{2}
14	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT
18, 21, 23	Vdd4, Vdd3, Vdd2	Power supply voltage for RF amplifier. See application circuit for required external components.	○ Vdd2,3,4 ———————————————————————————————————
26	Vctrl	Gain Control Voltage for RF Amplifier	Vctl 0
28	IF1	Differential IF input pins. For applications not requiring operation to DC, an off chip DC blocking capacitor should be used. For operation to DC this pin must not source/sink	IF1,IF2 O
30	IF2	more than 3 mA of current or part non function and possible part failure will result.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

GaAs MMIC I/Q UPCONVERTER 10 - 16 GHz

Typical Application

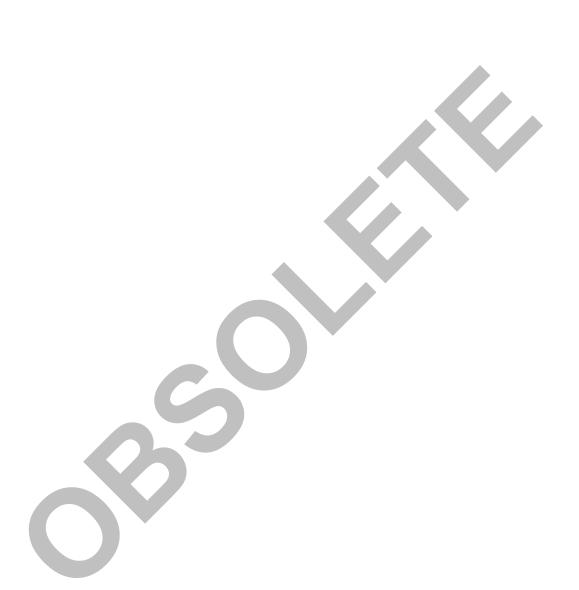


	C1-C4, C13, C16	100 pF Capacitor, 0402 Pkg.
1	C5 - C8, C14, C17	1000 pF Capacitor, 0603 Pkg.
1	C9 - C12, C15, C18	2.2 µF Capacitor, Case A Pkg.

Evaluation PCB

List of Materials for Evaluation PCB 131092 [1]

Item	Description			
J1, J2	SMA Connector			
J3, J4	K-Connector SRI			
J5, J6, J8, J9	DC Pins			
C1 - C4, C13, C16	100 pF Capacitor, 0402 Pkg.			
C5 - C8, C14, C17	1000 pF Capacitor, 0603 Pkg.			
C9 - C12, C15, C18	2.2 μF Capacitor, Case A			
U1	HMC924LC5 Upconverter			
PCB [2]	125487 Evaluation Board			


[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR, FR4 or Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

