

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	VALUE	UNIT			
INPUT						
Reverse voltage		V _R	6	V		
Forward current		I _F	50	mA		
Peak surge current	100 µs, 200 pps	I _{FSM}	0.5	А		
Power dissipation		P _{diss}	70	mW		
OUTPUT						
Peak off-state voltage		V _{DRM}	400	V		
RMS on-state current		I _{T(RMS)}	0.1	А		
Peak non-repetitive surge current	PW = 100 ms, 120 pps	I _{TSM}	1	А		
Power dissipation		P _{diss}	300	mW		
COUPLER						
Total power dissipation		P _{diss}	330	mW		
Storage temperature range		T _{stg}	-55 to +150	°C		
Ambient temperature		T _{amb}	-40 to +100	°C		
Lead soldering temperature	2 mm from case, t < 10 s	T _{sld}	260	°C		
Junction temperature		Tj	125	°C		

Note

• Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

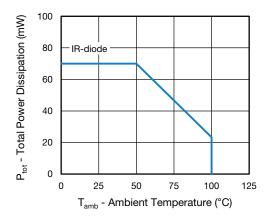


Fig. 1 - Total Power Dissipation vs. Ambient Temperature (IR-Diode)

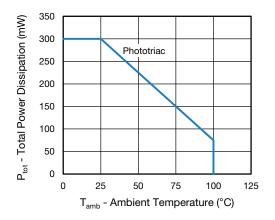


Fig. 2 - Total Power Dissipation vs. Ambient Temperature (Phototriac)

www.vishay.com

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT							
Forward voltage	I _F = 20 mA		V _F	-	1.3	1.5	V
Reverse voltage	I _R = 10 μA		V _R	6	-	-	V
Reverse current	V _R = 6 V		I _R	-	-	10	μA
Junction capacitance	$V_R = 0 V, f = 1 MHz$		Cj	-	50	-	рF
OUTPUT							
Peak off-state current, either direction	$V_{DRM} = 400 V^{(1)}$		I _{DRM}	-	10	100	nA
Peak off-state voltage, either direction	I _{TM} = 100 mA		V _{TM}	-	1.7	3	V
Critical rate of rise of off-state voltage	$I_F = 0 \text{ A}, V_D = 0.67 \text{ V}_{DRM}$		dV/dt _{cr}	100	-	-	V/µs
COUPLER ⁽²⁾							
Emitting diode trigger current	V_T = 3 V, R_L = 150 Ω	VO3020	I _{FT}	-	15	30	mA
		VO3021	I _{FT}	-	8	15	mA
		VO3022	I _{FT}	-	5	10	mA
		VO3023	I _{FT}	-	3	5	mA
Holding current	$I_F = 10 \text{ mA}, V_T \ge 3 \text{ V}$		I _H	-	200	-	μA

Notes

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements

⁽¹⁾ Test voltage must be applied within dV/dt ratings

(2) I_{FT} is defined as a minimum trigger current

SAFETY AND INSULATION	RATINGS			
PARAMETER	SYMBOL	VALUE	UNIT	
MAXIMUM SAFETY RATINGS				
Output safety power		P _{SO}	700	mW
Input safety current		I _{si}	400	mA
Safety temperature		T _S	175	°C
Comparative tracking index		CTI	175	
INSULATION RATED PARAMETERS	6			•
Maximum withstanding isolation voltage		V _{ISO}	5000	V _{RMS}
Maximum transient isolation voltage		V _{IOTM}	8000	V _{peak}
Maximum repetitive peak isolation voltage		V _{IORM}	890	V _{peak}
		V _{IORM}	1140 (1)	V _{peak}
Insulation resistance	$T_{amb} = 25 \ ^{\circ}C, V_{DC} = 500 \ V$	R _{IO}	10 ¹²	Ω
Isolation resistance	$T_{amb} = 100 \text{ °C}, V_{DC} = 500 \text{ V}$	R _{IO}	10 ¹¹	Ω
Climatic classification (according to IEC 68 part 1)			55 / 115 / 21	
Environment (pollution degree in accordance to DIN VDE 0109)			2	
Creepage distance (standard DIP-6)			≥7	mm
Creepage distance (400 mil DIP-6)			≥8	mm
Clearance distance (standard DIP-6)			≥7	mm
Clearance distance (400 mil DIP-6)			≥8	mm
Insulation thickness		DTI	≥ 0.4	mm

Notes

• As per DIN EN 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits

⁽¹⁾ 400 mil, option 6 only

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

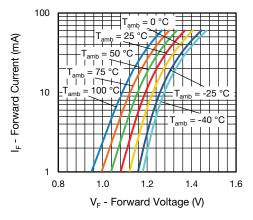


Fig. 3 - Forward Current vs. Forward Voltage

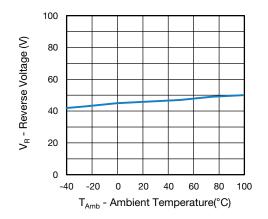


Fig. 4 - Reverse Voltage vs. Ambient Temperature

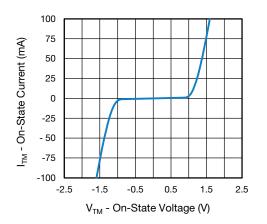


Fig. 5 - On-State Current vs. On-State Voltage

Fig. 6 - Off-State Leakage Current vs. Ambient Temperature

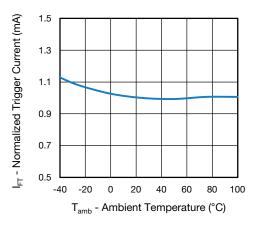


Fig. 7 - Normalized Trigger Current vs. Ambient Temperature

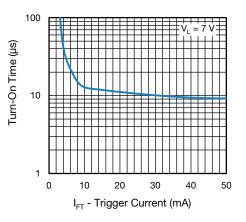


Fig. 8 - Turn-On Time vs. Trigger Current

Rev. 1.4, 05-Dec-2019

4 For technical questions, contact: optocoupleranswers Document Number: 84132

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

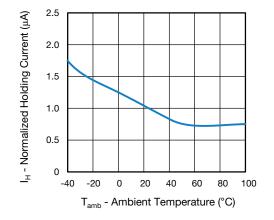


Fig. 9 - Normalized Holding Current vs. Ambient Temperature

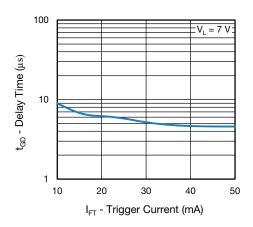


Fig. 10 - Delay Time vs. Trigger Current

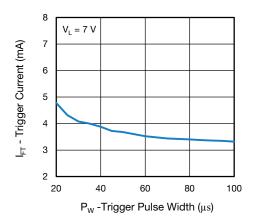


Fig. 11 - Trigger Current vs. Trigger Pulse Width

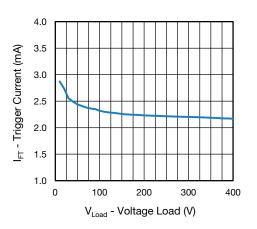


Fig. 12 - Trigger Current vs. Voltage Load

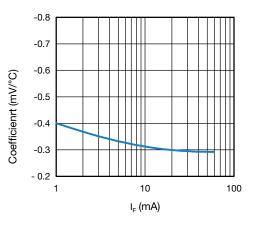


Fig. 13 - Coefficient vs. Forward Current

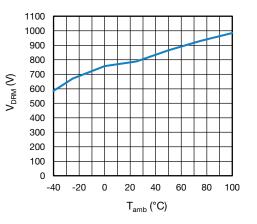


Fig. 14 - Peak Off-State Voltage vs. Ambient Temperature

Rev. 1.4, 05-Dec-2019

5

Document Number: 84132

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

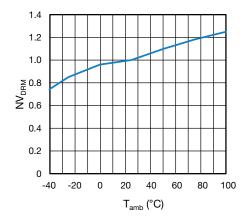
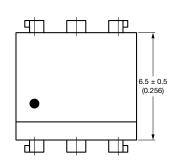
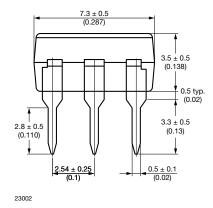




Fig. 15 - Normalized Off-State Voltage M2/M1 vs. Ambient Temperature

PACKAGE DIMENSIONS (in millimeters)

DIP-6

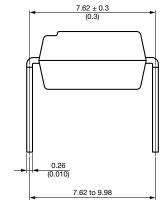
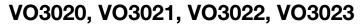
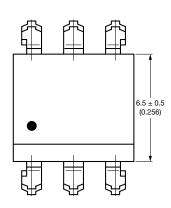
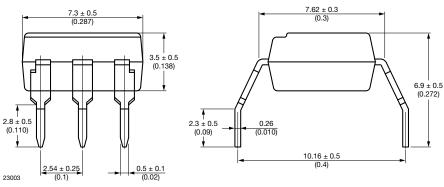



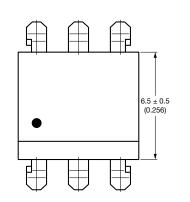
Fig. 16


6


Vishay Semiconductors

DIP-6, 400 mil

VISHAY



www.vishay.com

SMD-6

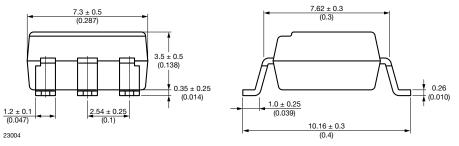


Fig. 18

Rev.	1.4,	05-Dec-2019
------	------	-------------

7

Vishay Semiconductors

PACKAGE MARKING

Fig. 19 - Example of VO3020-X017T

Notes

- "YWW" is the date code marking (Y = year code, WW = week code)
- VDE logo is only marked on VDE option parts
- Tape and reel suffix (T) is not part of the package marking

PACKING INFORMATION

DEVICES PER TUBE					
ТҮРЕ	UNITS/TUBE	TUBES/BOX	UNITS/BOX		
DIP-6	50	40	2000		
DIP-6, 400 mil	50	40	2000		

SMD-6 Tape

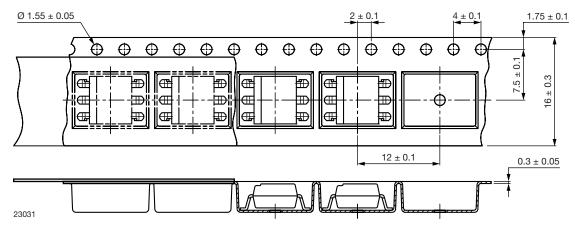


Fig. 20 - Tape and Reel Packaging (1000 pieces on reel)

Vishay Semiconductors

Reel

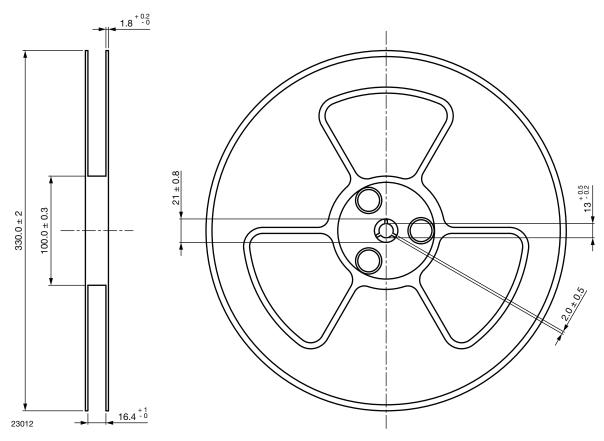
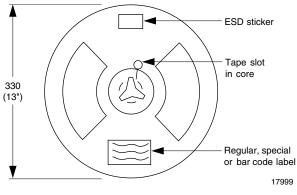
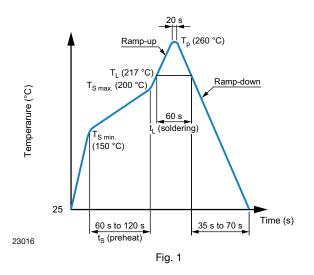



Fig. 21 - Tape and Reel Shipping Medium

REEL DIMENSIONS in millimeters

Rev. 1.4, 05-Dec-2019

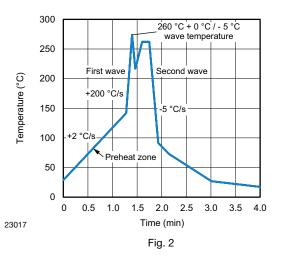

Vishay Semiconductors

SOLDER PROFILES

IR Reflow Soldering (JEDEC® J-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

PROFILE ITEM	CONDITIONS
Preheat	
- Temperature minimum (T _{S min.})	150 °C
- Temperature maximum (T _{S max.})	200 °C
- Time (min. to max.) (t _S)	90 s ± 30 s
Soldering zone	
- Temperature (T _L)	217 °C
- Time (t _L)	60 s
Peak temperature (T _p)	260 °C
Ramp-up rate	3 °C/s max.
Ramp-down rate	3 °C/s to 6 °C/s


Wave Soldering (JEDEC JESD22-A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature: $260 \degree C + 0 \degree C / - 5 \degree C$ Time: 10 s

Preheat temperature: 25 °C to 140 °C

Preheat time: 30 s to 80 s

Hand Soldering by Soldering Iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380 °C + 0 °C / - 5 °C Time: 3 s max.

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited Conditions: $T_{amb} < 30$ °C, RH < 85 % Moisture sensitivity level 1, according to J-STD-020

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.