Contents

1	Bloc	k diagram and pin description	6						
	1.1	Block diagram	6						
	1.2	Pin description	7						
2	Func	Function description							
	2.1	FM - mixers	2						
	2.2	FM - AGC	2						
	2.3	AM - LNA 1	2						
	2.4	AM - AGC	2						
	2.5	AM - Mixers	2						
	2.6	IF A/D converters	3						
	2.7	Audio D/A converters	3						
	2.8	VCO 1	3						
	2.9	PLL	3						
		2.9.1 Tuner PLL							
	2.10	Crystal oscillator	3						
	2.11	DSP and digital hardware accelerators	4						
	2.12	Digital high speed IO interface pins 1	5						
	2.13	Multipath reduction	5						
	2.14	HD Radio™ connectivity	6						
	2.15	I ² S - serial audio interface	9						
	2.16	Audio sample rate converter	!1						
	2.17	Serial control interface	2						
		2.17.1 Serial interface / boot mode	22						
		2.17.2 I ² C bus protocol							
	2.18	Digital-down-converter (DDC)	:5						
3	Elect	trical specifications	8						
	3.1	Absolute maximum ratings	28						
	3.2	Thermal data 2	28						
	3.3	General key parameters	28						
	3.4	Electrical characteristics	29						
		3.4.1 FM - section	29						

		3.4.2	AM - section	30
		3.4.3	VCO	31
		3.4.4	Phase locked loop	32
		3.4.5	Tuning DAC	32
		3.4.6	IF ADC	32
		3.4.7	Audio DAC	33
		3.4.8	IO interface pins	33
		3.4.9	I ² C interface	34
	3.5	Overa	Il system performance	35
		3.5.1	FM overall system performance	35
		3.5.2	AM MW overall system performance	37
		3.5.3	AM LW overall system performance	39
		3.5.4	AM SW overall system performance	39
		3.5.5	WX overall system performance	40
4	Fror	nt_and r	egisters	41
•	1101	it-ciid i		41
5	Wea	k signa	I processing	45
	5.1	FM IF	-processing	45
		5.1.1	Dynamic channel selection filter (DISS)	45
		5.1.2	Soft mute	45
		5.1.3	Adjacent channel mute	46
		5.1.4	Stereo blend	46
		5.1.5	High cut control	47
		5.1.6	Stereo decoder	48
	5.2	AM IF	-processing	48
		5.2.1	Channel selection filter	48
		5.2.2	Soft mute	48
		5.2.3	High cut control	49
6	Basi	ic appli	cation schematic	50
7	Pacl	kage inf	formation	51
	7.1	•	64 (10x10x1.4 mm) package information	
8	_		story	

List of tables

Table 1.	Device summary	. 1
Table 2.	Pin description	
Table 3.	Suggested GPIO direction and driving capability	15
Table 4.	SAI_BB timing values (normal mode)	
Table 5.	SAI_BB timing values (burst mode)	
Table 6.	Audio I ² S configuration overview	
Table 7.	I ² S interface timing (receiver)	
Table 8.	I ² S interface timing (transmitter)	
Table 9.	64-pin package boot mode configuration	
Table 10.	Overall filter characteristics for IBOC_FM filter	
Table 11.	Overall filter characteristics at output of IBOC_AM filter	
Table 12.	Overall filter characteristics for FM (not including DISS filter)	
Table 13.	Overall filter characteristics for AM	
Table 14.	Absolute maximum ratings	
Table 15.	Thermal data	
Table 16.	General key parameters	28
Table 17.	FM - section	29
Table 18.	AM - section	30
Table 19.	VCO	31
Table 20.	Phase locked loop	32
Table 21.	Tuning DAC	32
Table 22.	IF ADC	32
Table 23.	Audio DAC	33
Table 24.	IO interface pins	33
Table 25.	I ² C interface	34
Table 26.	FM overall system performance	35
Table 27.	AM MW overall system performance	
Table 28.	AM LW overall system performance	
Table 29.	AM SW overall system performance	
Table 30.	WX overall system performance	
Table 31.	Register 0x00	
Table 32.	Register 0x01	
Table 33.	Register 0x02	
Table 34.	Register 0x05	
Table 35.	Register 0x08	
Table 36.	Dynamic channel selection filter (DISS) - discrete set	
Table 37.	Soft mute - continuous set	
Table 38.	Adjacent channel mute - continuous set	
Table 39.	Stereo blend - continuous set	
Table 40.	High cut control - continuous set	
Table 41.	De-emphasis filter - continuous set	
Table 42.	Stereo decoder - continuous set	
Table 43.	Channel selection filter	
Table 44.	Soft mute - continuous set	
Table 45.	High cut control - continuous set	
Table 46.	LQFP64 (10x10x1.4 mm) package mechanical data	
Table 47.	Document revision history	53

TDA7786, TDA7786M List of figures

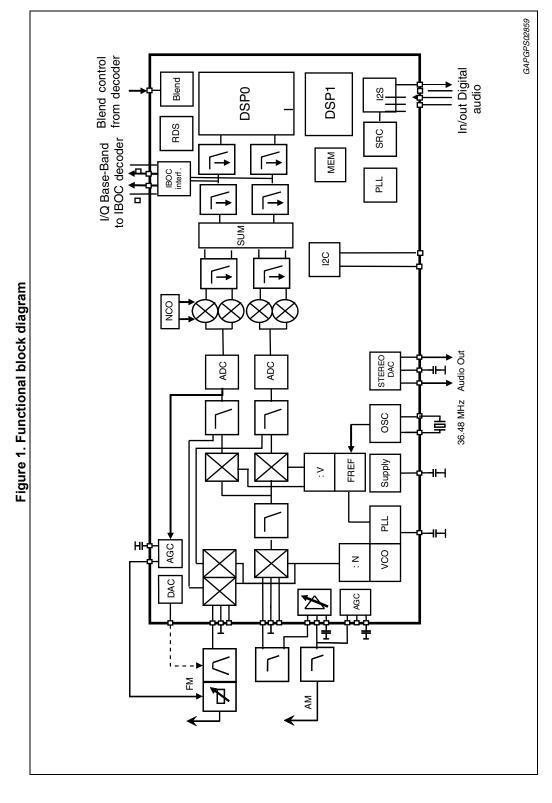

List of figures

Figure 1.	Functional block diagram	6
Figure 2.	Pin connection (top view)	7
Figure 3.	Crystal oscillator block diagram	. 14
Figure 4.	HD Radio™ system architecture example	. 16
Figure 5.	SAI_BB waveforms (normal mode)	. 17
Figure 6.	SAI_BB waveforms (burst mode)	. 18
Figure 7.	I ² S interface timing (receiver)	. 19
Figure 8.	I ² S interface timing (transmitter)	. 20
Figure 9.	I ² S interface 16-bit	. 21
Figure 10.	I ² S interface 32/24/20/16-bit	. 21
Figure 11.	I ² C "write" sequence	. 23
Figure 12.	I ² C "read" sequence	. 23
Figure 13.	Digital-down-converter simplified block diagram	. 25
Figure 14.	Cumulative transfer function at output of IBOC_FM filter	. 25
Figure 15.	Cumulative transfer function at output of IBOC_AM filter	. 26
Figure 16.	Cumulative digital-down-converter transfer function for FM	. 26
Figure 17.	Cumulative digital-down-converter transfer function for AM	. 27
Figure 18.	I ² C bus timing diagram	. 34
Figure 19.	FM input set-up	. 35
Figure 20.	AM MW input set-up	. 37
Figure 21.	AM LW input set-up	. 39
Figure 22.	AM SW input set-up	. 39
Figure 23.	WX input set-up	. 40
Figure 24.	FM wide-band application	. 50
Figure 25.	LQFP64 (10x10x1.4 mm) package outline	. 51

Block diagram and pin description

Block diagram

- -

1.2 Pin description

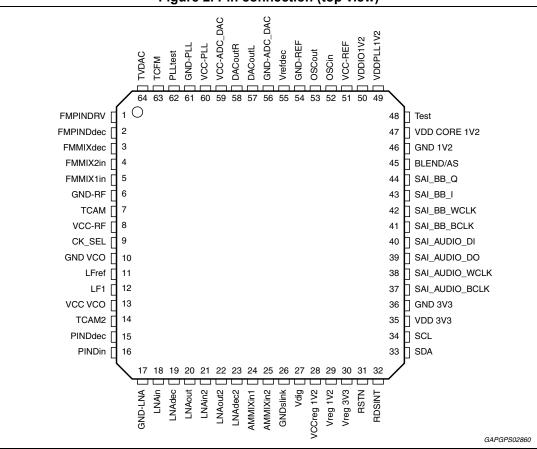


Figure 2. Pin connection (top view)

Table 2. Pin description

Pin	Pin name	I/O	Function	Description	Equivalent circuit
1	FMPINDRV	Out		FM PIN diode driver output	
2	FMPINDdec	In	FM	Integrated FM PINdiode decoupling	¥
3	FMMIXdec	-		FM RF signal ground	
4	FMMIXin2	In		FM mixer input 2	
5	FMMIXin1	In		FM mixer input 1	
6	GNDRF	-	-	RF power ground	-

Table 2. Pin description (continued)

Pin	Pin name	I/O	Function	Description	Equivalent circuit
7	TCAM	-	-	AM AGC time constant	
8	VCCRF	In	-	RF 5 V supply	-
9	CK_SEL	In	-	Master/Slave clock operation select	
10	GNDVCO	-		VCO ground	-
11	LFref	-		Loop filter reference	-
12	LF1	-		Loop filter output	-
13	VCCVCO	In	VCO	VCO 5V supply	-
14	TCAM2	-		AM AGC 2 nd order time constant	
15	PINDdec	-	AM pin diode	AM AGC internal PIN diode decoupling	T
16	PINDin	-		AM AGC internal PIN diode input	¥
17	GNDLNA	-		AM LNA ground	-
18	LNAin	In		AM LNA input	
19	LNAdec	-	AM LNA	AM LNA decoupling	
20	LNAout	Out]	AM LNA output	-
21	LNAin2	-		AM LNA input 2 nd stage	-

Table 2. Pin description (continued)

Pin	Pin name	I/O	Function	Description	Equivalent circuit	
22	LNAout2	-	- AM LNA	AM LNA output 2 nd stage		
23	LNAdec2	-	AWI LINA	AM LNA decoupling 2 nd stage	<u>-</u> ~-~-	
24	AMMIXin1	In		AM mixer input 1	1 1	
25	AMMIXin2	In	AM mixer inputs	AM mixer input 2		
26	GNDSLINK	-		Internal inter-IC communication bus ground	-	
27	Vdig	ln		Front-end digital 5 V supply	-	
28	VCCreg1V2	ln		Internal 1.2 V regulator 5 V supply	-	
29	REG1V2	Out		Internal 1.2 V regulator output	Т	
30	Vreg3v3	Out	Supply, ground and reset	Internal 3.3 V regulator output		
31	RSTN	In		Reset (low active) Pull-up 50 k Ω to 3.3 V IO supply		
32	RDSINT	Out		RDS interrupt output Pull-down 50 kΩ to ground	-	
33	SDA	In/Out	I ² C interface	I 2 C bus data Pull-up 50 k Ω to 3.3 V IO supply		
34	SCL	In	TO IIIICHACE	I ² C bus clock Pull-up 50 kΩ to 3.3 V IO supply		
35	VDD3V3	In	-	IO ring (3.3 V) supply	-	
36	GND3V3	-	-	IO ring (3.3 V) supply	-	

Table 2. Pin description (continued)

Pin	Pin name	I/O	Function	Description	Equivalent circuit
37	SAI_AUDIO_BCLK	In/Out		SAI clk Pull-down 50 kΩ to ground, SINE_3V3_LIN pad	
38	SAI_AUDIO_WCLK	In/Out		Audio SAI word-select Pull-down 50 kΩ to ground, SINE_3V3_LIN pad	
39	SAI_AUDIO_DO	Out		Audio SAI data output Pull-down 50 kΩ to ground, SINE_3V3_LIN pad	
40	SAI_AUDIO_DO	ln		Audio SAI data-input Pull-down 50 kΩ to ground, SINE_3V3_LIN pad	
41	SAI_BB_BCLK	In/Out	HD Radio™ connectivity/ Audio output	SAI Base-Band clock Pull-down 50 kΩ to ground, SINE_3V3_LIN pad	
42	SA_BB_WCLK	In/Out	I2S interface	SAI Base-Band word-select Pull-down 50 kΩ to ground, SINE_3V3_LIN pad	
43	SAI_BB_I Out			SAI Base-Band I data Pull-down 50 kΩ to ground, SINE_3V3_LIN pad	
44	SAI_BB_Q	Out		SAI Base-Band Q data Pull-down 50 kΩ to ground, SINE_3V3_LIN pad	
45	BLEND/AS	In		HD blend input Pull-down 50 k Ω to ground	
46	GND1V2	-	-	DSP core ground	-
47	VDD core 1V2	In	-	DSP core 1.2 V supply	-
48	Test	In	-	Test Mode Pull-down 50 kΩ to ground	
49	VDDPLL1V2	In	-	Digital PLL 1.2 V supply	-
50	VDDIO1V2	In	-	Internal inter-IC communication 1.2 V supply	-
51	VCC-REF	ln	-	Front-end reference frequency and regulator 5 V supply	-

Table 2. Pin description (continued)

Pin	Pin name	I/O	Function	Description	Equivalent circuit
52	OSCin	In		Crystal oscillator input	-
53	OSCout	Out	Oscillator	Crystal oscillator output	
54	GND-REF	-	-	Front-end reference frequency and regulator ground	-
55	Vrefdec	-	-	3.3 V Bias generation decoupling	
56	GND-ADC_DAC	-		IFADC and audio DAC ground	-
57	DACoutL	Out		Audio output left	ليو
58	DACoutR	Out	DAC	Audio output right	
59	VCC-ADC_DAC	In		IFADC and audio DAC 5 V supply	-
60	VCC-PLL	In		Tuning PLL 5 V supply	-
61	GND-PLL	-		Tuning PLL ground	-
62	PLLtest	Out	PLL	PLL Test output	
63	TCFM	-	-	FM AGC time constant	
64	TVDAC	Out	-	Tuning voltage output	-

2 Function description

2.1 FM - mixers

The FM Image Rejection mixer has two single ended inputs, selectable through software. They are designed to achieve best performance both in case of a passive tuned preselection and of a passive fixed band-pass preselection without tuning for lower cost applications.

The input frequency is down-converted to very low IF with high image rejection.

The tuned application is supported by an 8-bit tuning DAC. The alignment of the DAC is performed automatically on-chip.

2.2 FM - AGC

The programmable RFAGC senses the mixer input to avoid overload.

When the RFAGC threshold is reached, the PIN diode output is activated in order to attenuate the incoming RF signal

The PIN diode driver is able to drive external PIN diodes with up to 15 mA current.

The time constant of the FM AGC is defined by the combination of an external capacitor and internal currents. There are two programmable attack and decay time constants.

2.3 AM - LNA

The integrated AM LNA feature is integrated with low-noise and high IIP2 and IIP3. The gain of the LNA is controlled by the AGC. The maximum gain is set with an external resistor, typically 26 dB with 470 Ω .

2.4 AM - AGC

The programmable AM RFAGC senses the mixer inputs and controls the internal PIN diodes and LNA gains.

Firstly the LNA gain is reduced by about 10 dB, and then the PIN diodes are activated to further attenuate the signal.

The time constant of the 2nd order AM AGC LPF is defined by both external components and programmable internal currents.

2.5 AM - Mixers

The image rejection mixer has two AM inputs selectable via software. It easily supports low-cost applications for extended frequency bands like short-waves.

The input frequency is converted to low IF with high image rejection.

577

2.6 IF A/D converters

A high performance IQ-IFADC converts the IF signal to the digital domain for subsequent digital signal processing.

Two fully differential, continuous-time Sigma-Delta ($\Sigma\Delta$) IF-ADCs are used for both the 'I' path and the 'Q' path. For each IFADC, two fully differential input nodes are fed with an input signal having a bandwidth up to 325 kHz. This fully differential design provides good suppression of even-order harmonics. For complex filtering, the input signals of the 'I' path and the 'Q' path have a 90 degree phase shift. The IFADC sampling frequency is 36.48 MHz.

2.7 Audio D/A converters

A CD-quality (>100dB DR) stereo DAC provides the left/right audio signals after IF processing and stereo-decoding by the DSP. In presence of an external HD Radio™ decoder the DAC delivers the high quality audio resulting from the decoding of the HD Radio™ transmissions.

2.8 VCO

The VCO is fully integrated without any external tuning component. It covers all the FM frequency bands including EU, US, Japan, East-Europe, Weather-Band and the AM bands including LW, MW and SW. Its center frequency is approximately 2.7 GHz.

2.9 PLL

2.9.1 Tuner PLL

The very high-speed tuning PLL is able to settle within about 100 µs for fast RDS applications. The frequency step can be as low as 5 kHz in FM and 500 Hz in AM.

2.10 Crystal oscillator

The device works with a 36.48 MHz fundamental tone crystal. The oscillator block diagram is shown in *Figure 3*. On the PCB the crystal must be connected as close as possible to the chip oscillator input and output pins of the chip. The internal load capacitance together with pin and pad capacitance is optimized for fundamental tone crystal units at 36.48 MHz. It is not recommended to put any additional external load capacitors. By suitably configuring pin #9 (CK_SEL), the device can be operated as either a clock master or a clock slave. If pin 9 is left open or tied to GND, the device is configured as clock master (typical operation mode). In case the device is configured as clock slave, pin 9 needs to be connected to 5 V. Then the crystal oscillator is switched off and the device expects a crystal equivalent signal on the OSCout/OSCin pins.

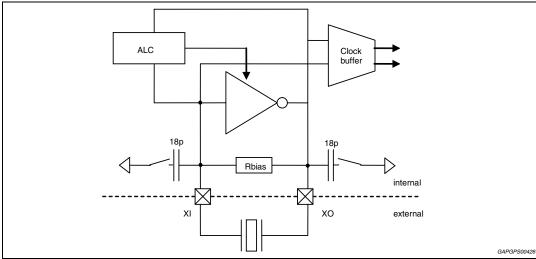


Figure 3. Crystal oscillator block diagram

2.11 DSP and digital hardware accelerators

The TDA7786x embeds two DSP cores for high computational power and achievable customization. The DSP cores, in combination with the hardware accelerators, take care of all the tuner digital signal processing. The main program is fixed in ROM. Control parameters are copied to RAM and are accessible and modifiable there, thus allowing a parametric performance optimization. The operations performed by the DSP cores and HW accelerators are:

- digital down-conversion of IF
- bandwidth selection with variable controlled bandwidth
- FM and AM noise blanking
- FM/AM demodulation with soft-mute, high-cut, weak signal processing and quality detection
- FM stereo decoding with stereo-blend
- RDS demodulation including error correction and block synchronization with generation of an RDS interrupt for the main μP
- Autonomous control of RDS-AF tests
- Self-alignment of pre-selection tuning

577

2.12 Digital high speed IO interface pins

The IC has several IOs tasked for connectivity to an external HD Radio^{\top M} decoder and/or to I²S audio sources and destinations (pins 37 to 44).

These pins are driven by a special buffer that has been developed to reduce disturbance originating from activity on the digital lines. This bidirectional buffer is based on a TTL Schmitt trigger receiver and a slew-rate controlled driver with programmable cut-off frequency and current capability.

Typical configurations of these IOs for both analog and digital-HD reception are indicated in *Table 3*; for the suggested configuration all the slew-rate controlled pads are programmed with a 10 MHz cut-off frequency:

Driving capability Use case: Use case: Pin **HD** reception digital audio out 10 pF 5 pF ΙN OUT 37 Χ 38 IN OUT Χ Χ 39 OUT OUT 40 IN IN Χ 41 OUT Χ 42 OUT _ Χ 43 OUT Χ 44 OUT Χ

Table 3. Suggested GPIO direction and driving capability

In case a different GPIO configuration is used, it is recommended to connect the TDA7786x to an externally regulated 3.3 V source.

2.13 Multipath reduction

The TDA7786 is equipped with a basic FM multipath noise reduction system in addition to the traditional weak signal processing. The algorithm, called DANCE, assures an improved performance in presence of in-band interference (such as in case of multipath).

The premium version of the ELITE family, the TDA7786M is equipped with a superior algorithm, called MuSICA, to further enhance the reception quality even in presence of strong multipath.

2.14 HD Radio™ connectivity

The ELITE complies with HD Radio™ interface specifications as per Ibiquity's 'RX_SSS_1108 HD Radio™ power efficient RF-IF and peripheral processing (power RIPP) specification', thus providing an external HD Radio™ decoder with I/Q base-band signals and receiving the decoded digital audio from it, as shown in *Figure 4*.

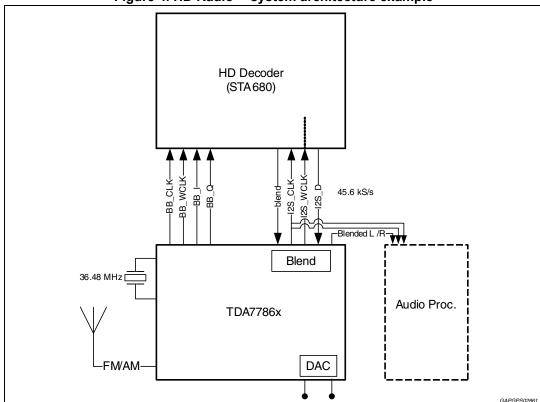


Figure 4. HD Radio™ system architecture example

The complex baseband signal of an IBOC transmission is sent to the external decoder using the dedicated digital output interface SAI_BB. The SAI_BB supports the modes shown in both *Figure 5* and *Figure 6*. Timing information for the protocols shown is detailed in *Table 4* and *Table 5*.

577

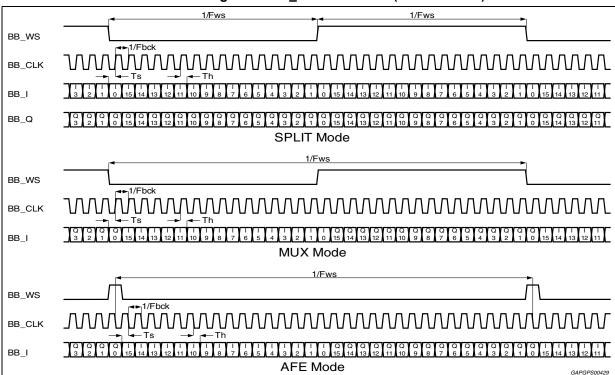


Figure 5. SAI_BB waveforms (normal mode)

Table 4. SAI_BB timing values (normal mode)

Symbol	Parameter	Rate					
FpII	PLL clock	332.8	345.6	451.584	466.944	245.76	MHz
Fws	Word strobe	650 (332.8/512)	675 (345.6/512)	882 (451.582/512)	912 (466.944/512))	48 (245.76/5120)	KHz
Fbclk	Bit clock in SPLIT mode	10.4 (332.8/32)	10.8 (345.6/32)	14.112 (451.584/32)	14.592 (466.944/32)	0.768 (245.76/320)	MHz
Fbclk	Bit clock in MUX mode	20.8 (332.8/16)	21.6 (345.6/16)	28.224 (451.584/16)	29.184 (466.944/16)	1.536 (245.76/160)	MHz
Fbclk	Bit clock in AFE mode	20.8 (332.8/16)	21.6 (345.6/16)	28.224 (451.584/16)	29.184 (466.944/16)	1.536 (245.76/160)	MHz
Ts	Data setup time (min)	5	5	5	5	5	ns
Th	Data hold time (min)	5	5	5	5	5	ns

Figure 6. SAI_BB waveforms (burst mode)

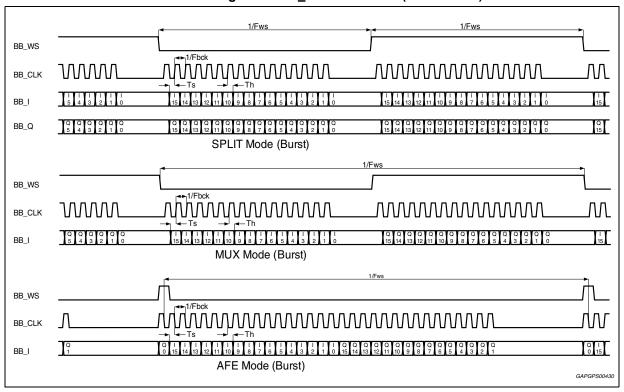


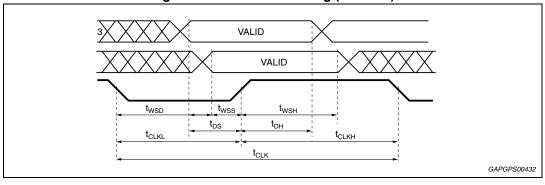
Table 5. SAI_BB timing values (burst mode)

Symbol	Parameter			Rate			Unit
FpII	PLL clock	332.8	345.6	451.584	466.944	245.76	MHz
Fws	Word strobe	650 (332.8/512)	675 (345.6/512)	882 (451.582/512)	912 (466.944/512))	48 (245.76/5120)	KHz
Fbclk	Bit clock in SPLIT mode	332.8/n (n=16/32)	345.6/n (n=16/32)	451.584/n (n=16/32)	466.944/n (n=16/32)	245.76/n (n=160/320)	MHz
Fbclk	Bit clock in MUX mode	332.8/n (n=8/16)	345.6/n (n=8/16)	451.584/n (n=8/16)	466.944/n (n=8/16)	245.76/n (n=80/160)	MHz
Fbclk	Bit clock in AFE mode	332.8/n (n=8/16)	345.6/n (n=8/16)	451.584/n (n=8/16)	466.944/n (n=8/16)	245.76/n (n=80/160)	MHz
Ts	Data setup time (min)	5	5	5	5	5	ns
Th	Data hold time (min)	5	5	5	5	5	ns

2.15 I²S - serial audio interface

The audio SAI serves as stereo input/output audio bus interface (e.g. to an external audio processor, or from an external HD decoder) using the I²S protocol. The latter calls for a bit clock line, a word select line and data lines; the SAI interface on the TDA7786x has one input data line and one output data line.

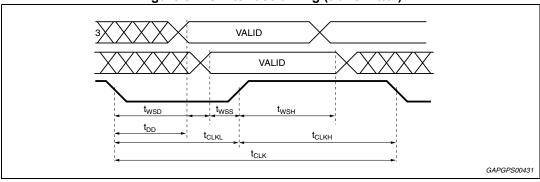
The audio SAI lines are: SAI_AUDIO_CLK (pin 37, bit clock line), SAI_AUDIO_WCLK (pin 38, word select (frame) clock line), SAI_AUDIO_DO (pin 39, data output line), SAI_AUDIO_DI (pin 40, data input line). In master mode SAI_AUDIO_BCLK and SAI_AUDIO_WCLK are outputs, in slave mode these pins are inputs.


The input and output data lines are operated at the same sampling frequency.

The bit clock has one pulse for each discrete bit of data on the data lines. The bit clock operates at a frequency which is a multiple of the sample rate, and is equal to the sampling frequency times the number of bits per word times two.

Max. bit clock frequency Master/Slave mode Output Rate /ksps Input Rate/ksps World length Bits Channels **Formats** Valid E 1x2 In I²S SAI and 16/32 16/24 4 M/S 32-48 32-48 12.288 MHz 1x2 Out

Table 6. Audio I²S configuration overview


Note: The polarity of the signals and the data bit-shift direction can be selected by configuration bits.

5/

Table 7. I²S interface timing (receiver)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{CLK}	Minimum Clock Cycle (CLK)	-	50	-	-	ns
t _{CLKH}	Minimum bit clock high time	-	25	-	-	ns
t _{CLKL}	Minimum bit clock low time	-	25	ı	-	ns
t _{WSS}	Word-select setup time	slave mode	5	-	-	ns
t _{WSH}	Word-select hold time	slave mode	3	-	-	ns
t _{WSD}	Word-select delay	master mode	4	-	-	ns
t _{DS}	Data setup time	-	5	-	-	ns
t _{DH}	Data_hold time	-	5	-	-	ns

Figure 8. I²S interface timing (transmitter)

Note: The polarity of the signals and the data shift direction can be selected by configuration bits.

Table 8. I²S interface timing (transmitter)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{CLK}	Minimum Clock Cycle (CLK)	-	50	-	-	ns
t _{CLKH}	Minimum bit clock high time	-	25	-	-	ns
t _{CLKL}	Minimum bit clock low time	-	25	-	-	ns
t _{WSS}	Word-select setup time	slave mode	5	-	-	ns
t _{WSH}	Word-select hold time	slave mode	5	-	-	ns
t _{WSD}	Word-select delay	master mode	5	-	-	ns
t _{DD}	Data delay	-	5	-	-	ns

The audio SAI can be configured via software to be operating either in master or in slave mode. The frame length is selectable as 16/32 bits per word, with 16/24 valid bits. *Figure 9* shows the default setting of SAI for the 16-bit mode. Different settings of clock polarity, word clock polarity, transmission mode (I²S mode) and data direction (either MSB or LSB first transmission) are possible, and they can be changed through software. Supported configurations are shown in *Figure 10*. Timing information for the protocols is detailed in *Figure 10*.

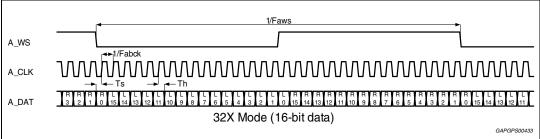
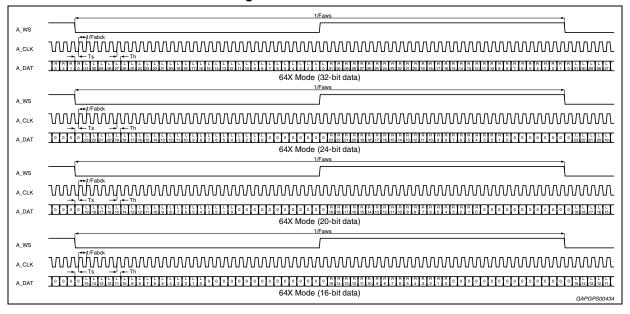



Figure 10. I²S interface 32/24/20/16-bit

2.16 Audio sample rate converter

The TDA7786x is equipped with internal sample rate converters (SRC) that can be configured to modify the sampling frequency of outgoing and incoming digital audio both in the master and in the slave SAI mode (the native audio sampling frequency of the TDA7786x is 45.6 kHz).

The SRC is able to automatically detect the input and output sampling rates and includes a sample clock jitter rejection function which can be enabled separately. The input signal word-width is 20 bits, while the output signal word width can be selected as 20 bits or 16 bits. In order to properly assist in the conversion, the SRC is coupled to self-adjusting low-pass filters.

Downloaded from Arrow.com.

2.17 Serial control interface

The device is controlled via I²C.

Through serial bus the processing parameters can be modified and the signal quality parameters and the RDS information can be read out.

The operation of the device is handled mainly through high level commands sent by the carradio microprocessor through the serial interface, which allows simplification of the operations carried out in the microprocessor itself. The high level commands include among others:

- change frequency (which allows to avoid computing the PLL divider factors)
- change band;
- start seek (the seek operation can be carried out by the TDA7786x in a completely autonomous fashion);
- RDS seek/search (jumps to AF and quality measurements are automatically sequenced).

2.17.1 Serial interface / boot mode

The device possesses two different I2C addresses: 0xC2/C3 and 0xC8/C9. The configuration is chosen by applying the proper voltage at the exit from reset to the pins indicated in Table 9. The configuration is latched (e.g. made effective) when the RSTN line transitions from low to high (when RSTN is low, the IC is in reset mode).

The voltage level forced to the boot pins must be released to start the system operation a suitable time after the RSTN line has gone high. The list of configurations is shown in the following table:

SAI_AUDIO_DO pin 39	RDS INT pin 32	BUS mode
0	0	I ² C Address = 0xC2
0	1	I ² C Address = 0xC8

Table 9. 64-pin package boot mode configuration

The status of these pins during the reset phase can be set to:

- High: through external <10 k Ω resistors tied to 3.3V
- Low: by not forcing any voltage on them from outside, as 50 k Ω internal pull-down resistors are present inside the device.

To make sure the I²C address is correctly latched up at start-up, it is advisable to keep the RSTN line low until the IC supply pins have reached their steady state, and further keep it low for an additional time Treset.

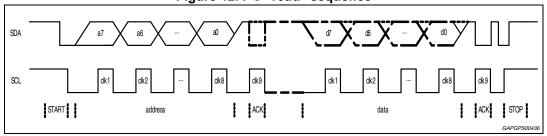

DocID026122 Rev 5 22/54

2.17.2 I²C bus protocol

The I²C communication requires two signals: clock (SCL) and data (SDA - bidirectional). The protocol requires an acknowledge signal after any 8-bit transmission.

A "write" communication example is shown in the figure below, for an unspecified number of data bytes (see the relevant technical documentation for frame structure description):

Figure 11. I²C "write" sequence



The sequence consists of the following phases:

- START: SDA line transitioning from H to L with SCL fixed H. This indicates that a new transmission is starting;
- 2. DATA LATCHING: on the rising SCL edge. The SDA line can vary only when SCL is low (otherwise its transitions are interpreted as either a START or a STOP transition);
- 3. ACKNOWLEDGE: on the 9th SCL pulse the microprocessor keeps the SDA line H, and the TDA7786x pulls it down in case the communication has been successful. Lack of the acknowledge pulse generation from the TDA7786x indicates a communication failure; the chip-address byte must be sent at the beginning of the transmission. The value can be 0xC2 or 0xC8 (according to the mode chosen at start-up) for "write"; as many data bytes as needed can follow the address before the communication is terminated. See the next section for details on the frame format;
- 4. STOP: SDA line transitioning from L to H with SCL H. This signifies the end of the transmission.

Dashed lines represent transmissions from the TDA7786x to the microprocessor. A communication example is shown in the figure below, for an unspecified number of data bytes (see later on for frame structure description):

Figure 12. I²C "read" sequence

The "read" sequence is similar to the "write" and it has the same constraints for start, stop, data-latching and the following differences:

- the chip address must always be sent by the microprocessor to the TDA7786x; the address must be 0xC3 (if C2 had been selected at boot) or 0xC9 (if 0xC8 had been selected at boot);
- the header is transmitted after the chip address (the same happens for "write") before data are transferred from the TDA7786x to the microprocessor. See the relevant technical documentation for details on the frame format;
- when data are transmitted from the TDA7786x to the μP , the latter keeps the SDA line H;
- the acknowledge pulse is generated by the μP for those data bytes that are sent by the TDA7786x to the μP . Failure of the μP to generate an ACK pulse on the 9th CLK pulse has the same effect on the TDA7786x as a STOP.

The maximum clock speed is 500 kbit/s.

Warning:

When the TDA7786x is not powered on, the internal ESD protection diodes act as a pull-down keeping the I²C lines voltage below 2 V. This implies that the I²C bus connected to the TDA7786x may not be used to drive other devices when the TDA7786x is powered off.

Digital-down-converter (DDC) 2.18

The complex digital mixer in the DDC performs mixing of the IF signal to zero IF. The internal sample rate for FM/AM processing is 456 kS/s and the sample rate for FM/AM IBOC is 912 kS/s. AM IBOC require additional filtering implemented in software.

Low EMI BB SRC SW DRM AM IBOC **FILTER** NCO MUX FILTERING FM IBOC FILTER Base-Band ADC digital mixer IR AND DECIMATION AND DECIMATION processing 36.48MS/s 912kS/s 456 kS/s GAPGPS00437

Figure 13. Digital-down-converter simplified block diagram

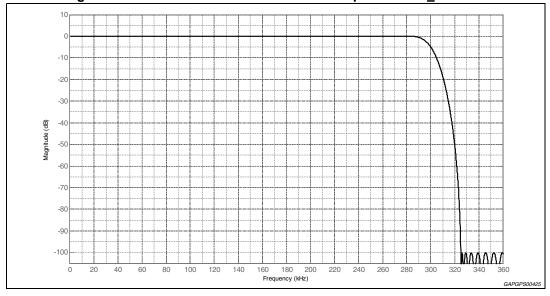


Table 10. Overall filter characteristics for IBOC_FM filter

ItemValueUnitPass-band edge282kHzStop-band edge325kHz				
Item	Value	Unit		
Pass-band edge	282	kHz		
Stop-band edge	325	kHz		
In-band ripple (0 kHz to 282 kHz)	<0.002	dB		
Anti-alias band range	[-500 +500]	kHz		
Anti-alias Attenuation	100	dB		

DocID026122 Rev 5

25/54

-10 -20 -30 -40 -50 -90 -100 L GAPGP02304

Figure 15. Cumulative transfer function at output of IBOC_AM filter

Table 11. Overall filter characteristics at output of IBOC_AM filter

Item	Value	Unit
Pass-band edge	15	kHz
Stop-band edge	25	kHz
In-band ripple	<0.34	dB
Anti-alias Attenuation	>100	dB

-30 -50 -100 120 Frequency (kHz) GAPGPS00438

Figure 16. Cumulative digital-down-converter transfer function for FM

DocID026122 Rev 5 26/54

Table 12. Overall filter characteristics for FM (not including DISS filter)

Item	Value	Unit
Pass-band edge	45.8	kHz
Stop-band edge	228	kHz
In-band ripple	<0.003	dB
Anti-alias Attenuation	>100	dB

Figure 17. Cumulative digital-down-converter transfer function for AM

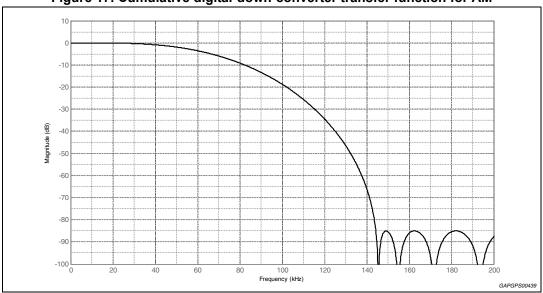


Table 13. Overall filter characteristics for AM

Item	Value	Unit
Pass-band edge	20	kHz
Stop-band edge	300	kHz
In-band ripple	<0.051	dB
Anti-alias Attenuation	>100	dB

3 Electrical specifications

3.1 Absolute maximum ratings

Table 14. Absolute maximum ratings

Symbol	Parameter	Test condition	Min	Тур	Max	Units
V _{CC}	Abs. supply voltage	-	-0.5	-	5.5	V
T _{stg}	Storage temperature	-	-55	-	150	°C
		Human Body model	> ±2000			
V _{ESD}	ESD absolute minimum withstand voltage	Charged device model	> ±400			V
	William Voltage	Charged device mode, corner pins	> ±750			
-	Max. input at any pin (latch-up characteristic)	I _{INMAX}	±100		mA	

Note:

For all pins 37-44, when set as input, injecting current cannot exceed 20 mA as it would lead to voltage at the pin above the abs max.

3.2 Thermal data

Table 15. Thermal data

Symbol	Parameter	Test condition	Value	Units
R _{th}	Thermal resistance	LQFP64 10x10, JEDEC 2s1p PCB	55	°C/W

3.3 General key parameters

Table 16. General key parameters

Symbol	Parameter	Test condition	Min	Тур	Max	Units
V _{CC}	5 V supply voltage	see note ⁽¹⁾	4.7	5	5.2	V
I _{CC}	supply current @ 5 V	see note V	-	175	225	mA
T _{amb}	Ambient temperature range	-	-40	-	85	°C
Tj	Operating junction temperature	-	-	-	150	°C
V _{VCCREG12}	VCCREG12 supply voltage	see note (2)	2.3	-	5.2	V
V _{1V2}	Digital core 1.2 V supply voltage	when supplied externally see note ⁽³⁾	1.14	1.2	1.3	V
I _{1V2}	Digital core 1.2 V supply current	V _{1V2} = 1.2V see note ⁽³⁾	-	55	80	mA
V _{3V3}	Digital IO 3.3 V supply voltage	when supplied externally see note ⁽⁴⁾	3.0	-	3.6	V

Table 16. General key parameters (continued)

Symbol	Parameter	Test condition	Min	Тур	Max	Units
I _{3V3}	Digital IO 3.3 V supply current	Maximum current specified only in case generated from Internal supply only	-	-	10	mA

- 1. FM functional test from antenna mixer input to audio output.
- In the typical application supplied from 5 V with a 27 Ω series resistor.
 Test condition: maximum current load for minimum value, unloaded for maximum value.
- When the 1.2 V supply is applied externally, and not using the internal 1.2 V regulator. Test condition: FM functional test from antenna mixer input to audio output.
- 4. When the 3.3 V supply is applied externally, and not using the internal 3.3 V regulator.

3.4 Electrical characteristics

 V_{CC} = 4.7 V to 5.25 V; T_{amb} = -40 °C to +85 °C; unless otherwise specified.

3.4.1 FM - section

Table 17. FM - section

Symbol	Parameter	Test condition	Min	Тур	Max	Units
FM IMR Mix	er					
	Voltage gain (mix in -> s.e. test	RF gain 0	33	35	37	
RF Gain		RF gain 1 ⁽¹⁾	36	38	40	dB
RF Gaill	output)	RF gain 2	37	39	41	ив
		RF gain 3	39	41	43	
Vnoise low	Input poise veltage (DE gain 0)	Rsource=1.25 kΩ, noiseless	1	2.3	2.9	nV/√Hz
gain	Input noise voltage (RF gain 0)	Rsource=0	-	2.1	2.6	
Vnoise high	Input noise voltage (RF gain 3)	Rsource=1.25 kΩ, noiseless	-	1.9	2.4	nV/√Hz
gain		Rsource=0	-	1.6	2.0	
IIP3	3 rd order intercept point	RF gain 0, up to Vin/tone = 92 dBμV	124	127	_	dΒμV
IIFO		RF gain 3, up to Vin/tone = 86 dBμV	119	122	-	
FM AGC						
		min setting, reg8<14> =1	85.4	88.4	91.4	
	RFAGC threshold, referred to mixer input;	max setting, reg8<14>=1	89	92	95	4D+1/
	RF level	min setting, reg8<14>=0	88.4	91.4	94.4	dΒμV
RFAGC-Thr		max setting, reg8<14>=0	92	95	98	
	Threshold steps	-	1.3	1.8	2.3	dB
	Threshold error	@ T _{amb}	-1.5	-	1.5	dB
	Threshold temperature drift	-	-	0.016	-	dB/K

DocID026122 Rev 5

20

μΑ

mA

3

-0.9

Symbol Test condition Units **Parameter** Min Тур Max min setting 120 122 124 dBµV IFAGC threshold 126 128 130 $dB\mu V$ max setting IFAGC-Thr Threshold steps 1.5 2 2.5 dB Threshold error -1.5 1.5 dB @ T_{amb} Threshold temperature drift 0.016 dB/K _ -Slow attack 10 30 I attack 100 200 300 Fast attack Time μΑ constant 2 5 Slow decay I decay 10 20 30 Fast decay @ T_{amb} (2) -15 PIN diode source current mΑ

Table 17. FM - section (continued)

@ T_{amb}

3.4.2 AM - section

PIN diode sink current

constant current mode

PIN diode source current in

Table 18. AM - section

Symbol	Parameter	Test condition	Min	Тур	Max	Units
AM IMR Mix	er					
Gain	Voltage gain (mix in -> s.e.	normal	20	22	24	dB
Gaiii	test output) ⁽¹⁾	reduced	17	19	21	
Rin	Input resistance	-	20	30	45	kΩ
Vnoise	Input noise voltage	Mix 1, 2 $R_{\text{source}} = 1 \text{ k}\Omega$, noise-less	-	7.5	9	nV/√Hz
IIP3	3 rd order intercept point	Mix1, 2 up to Vin/tone = 90 dBμV	128	132	-	dΒμV
IIP2	2 nd order intercept point	Mix1, 2 up to Vin/tone = 90 dBμV	152	158	-	dΒμV
LO hsupp	LO harmonic suppression	-	80	-	-	dB
AM LNA						
Coin	Voltage gain	Max gain, R_{ext} = 470 Ω	24	28	32	4D
Gain	Voltage gain	Min gain (AGC controlled)	8	12	16	dB
R _{in}	Input resistance	-	600	950	1300	kΩ
C _{in}	input capacitance	-	-	20	-	pF

^{1.} The gain is internally 6 dB higher than what measured at the test output. This is due to the differential to single-ended conversion used for the test output.

The current is generated by a PTAT (proportional to absolute temperature) source, and has therefore a temperature dependency described by: ΔI/Io = ΔT/To, with Io being the current at ambient temperature (25 °C) and To the ambient temperature (25 °C) expressed in Kelvin, that is 298K.

Table 18. AM - section (continued)

Symbol	Parameter	Test condition	Min	Тур	Max	Units	
V _{noise}	Input noise voltage	-	-	0.7	1.0	nV/√Hz	
IIP3	3 rd order intercept point	@ maximum LNA gain	116	120	-	dΒμV	
IIP2	2 rd order intercept point	@ maximum LNA gain	121	127	-	dΒμV	
AM PIN diod	de						
IIP2	2 rd order intercept point	Full attenuation, Csource = 80 pF, f = 1 MHz	134	140	-	dΒμV	
Res	Minimum resistance	-	-	5	15	Ω	
Cin	Input capacitance	High ohmic	-	2	-	pF	
AM AGC							
AGC-Thr	Referred to mixer input; RF level	Mix 1,2 min setting	80	83	86	dDu\/	
AGC-IIII		Mix 1,2 max setting	92.6	95.6	98.6	- dBµV	
Thr-steps	Threshold steps	-	1.3	1.8	2.3	dB	
-	Threshold error	@ T _{amb}	-2.5	-	2.5	dB	
-	Threshold temperature drift	-	-3	-	3	dB	
-	PIN diode source current	@ T _{amb} See note ⁽²⁾	-10	-	-	mA	
-	PIN diode sink current	-	15	30	45	μA	
-	PIN diode source current in constant current mode	@ T _{amb} See note ⁽²⁾	-1	-	-	mA	

The gain is internally 6 dB higher than what measured at the test output. This is due to the differential to single-ended conversion used for the test output.

3.4.3 VCO

Table 19. VCO

Symbol	Parameter	Test condition	Min	Тур	Max	Units
fvco, _{min}	Minimum VCO oscillation frequency ⁽¹⁾	-	-	-	2.34	GHz
fvco, _{max}	Maximum VCO oscillation frequency (2)		3.025	-	-	GHz
PN	Phase noise of LO	Locked VCO; values referred @ 100MHz @ 100 Hz @ 1 kHz @ 10 kHz	-	-105 -115 -115	-	dBc/Hz
dev	deviation error (RMS)	FM reception, deemphasis 50 µs, f _{audio} =20 Hz20 kHz	-	5	8	Hz

^{1.} Limited by application Firmware to 2.1 GHz.

^{2.} Limited by application Firmware to 3.1 GHz.

DocID026122 Rev 5

31/54

The current is generated by a PTAT (proportional to absolute temperature) source, and has therefore a temperature dependency described by: ΔI/Io = ΔT/To, with Io being the current at ambient temperature (25 °C) and To the ambient temperature (25 °C) expressed in Kelvin, that is 298K.

3.4.4 Phase locked loop

Table 20. Phase locked loop

Symbol	Parameter	Test condition	Min	Тур	Max	Units
T _{settle}	Settling time FM	Δf < 10 kHz	-	100	140	μs
FM step	FM Frequency step	-	-	5	-	kHz
AM step	AM frequency step	-	-	500	-	Hz

3.4.5 Tuning DAC

Table 21. Tuning DAC

Symbol	Parameter	Test condition	Min	Тур	Max	Units
R _{es}	Resolution	8 bit	14	18	22	mV
V _{outmin}	Min output voltage	-	-	0.6	0.75	V
V _{outmax}	Max output voltage	-	VCC-0.25	VCC-0.15	-	V
R _{out}	Output impedance	-	1.5	2.5	3.5	kΩ
DNL	Diff. Nonlinearity	-	-	-	0.5	LSB
T _{conv}	Conversion time	Without capacitive load	-	20	-	μs

3.4.6 IF ADC

Table 22. IF ADC

Symbol	Parameter	Test condition	Min	Тур	Max	Units
DR _{FM}	Dynamic range in FM	BW = ±100 kHz	87	90	-	dB
vnoise _{FM}	Input noise referred to mixer input	RF gain 2	1.7	0.94	-	nV/√Hz
DR _{AM}	Dynamic range in AM	BW = ±3 kHz	105	108	-	dB
vnoise _{AM}	Input noise referred to mixer input	normal gain	6.3	3.2	-	nV/√Hz
DR _{FM-HD}	Dynamic range in FM-IBOC	BW = ±200 kHz	82	85	ı	dB
Vnoise _{FM-HD}	Input noise referred to mixer input	RF gain 2	2.3	1.2	-	nV/√Hz
DR _{AM-HD}	Dynamic range in AM-IBOC	BW = ±15 kHz	97	100	-	dB
vnoise _{AM-HD}	Input noise referred to mixer input	normal gain	5.6	2.9	-	nV/√Hz

3.4.7 Audio DAC

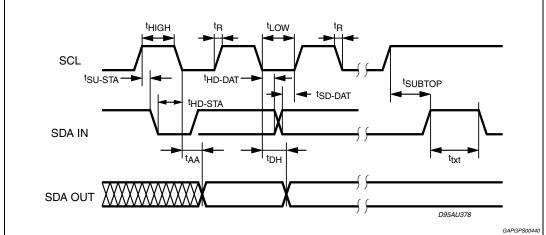
Table 23. Audio DAC

Symbol	Parameter	Test condition	Min	Тур	Max	Units
V _{out}	Max. output voltage	Full scale	1.2	1.4	-	Vrms
BW	Pass-band	0.01dB attenuation	-	20	-	KHz
Rout	Output resistance	-	100	150	200	Ω
multipath	Output noise	-	-	14	30	μVrms
D	Distortion	-6 dBFS	-	0.03	0.05	%

3.4.8 IO interface pins

Table 24. IO interface pins

Symbol	Parameter	Test condition	Min	Тур	Max	Units
-	High level output voltage	Unloaded	2.9	3.2	-	V
-	Low level output voltage	Unloaded	-	0.1	0.3	V
-	Input voltage range	-	0	-	3.5	V
-	High level input voltage	-	2.0	-	-	V
-	Low level input voltage	-	-	-	0.8	V
T _{reset}	Reset time	Minimum time during which pin RSTN must be low so as to reset the device	10	-	-	μs
T _{latch}	Boot mode configuration latch time	Minimum time during which the voltage applied at pins 32 and 39 must be driven in order to latch the correct control serial bus address configuration	10	-	-	μѕ


I²C interface 3.4.9

The I²C protocol serial bus communication parameters of the following table are defined as in *Figure 18*.

Table 25. I²C interface

Symbol	Parameter	Test condition	Min	Тур	Max	Units
f _{SCL}	SCL Clock frequency	-	-	-	500	kHz
t _{AA}	SCL low to SDA data valid	-	0.3	-	-	μs
t _{buf}	Time the bus must be kept free before a new transmission	-	1.3	-	-	μs
t _{HD-STA}	START condition hold time	-	0.6	-	-	μs
t _{LOW}	Clock low period	-	1.3	-	-	μs
t _{HIGH}	Clock high period	-	0.6	-	-	μs
t _{SU-SDA}	START condition setup time	-	0.1	-	-	μs
t _{HD-DAT}	Data input hold time	-	0	-	0.9	μs
t _{SU-DAT}	Data input setup time	-	0.1	-	-	μs
t _R	SDA & SCL rise time	-	-	-	0.3	μs
t _F	SDA & SCL full time	-	-	-	0.3	μs
t _{SU-STOP}	Stop condition setup time	-	0.6	-	-	μs
t _{DH}	Data out time	-	-	-	0.3	μs

Figure 18. I²C bus timing diagram

3.5 **Overall system performance**

3.5.1 FM overall system performance

Antenna level equivalence: 0 dB μ V = 1 μ Vrms (Antenna terminal voltage with 75 Ω dummy load).

50Ω 50 Ω 8200 pF PCB UNDER TEST 50 O

Figure 19. FM input set-up

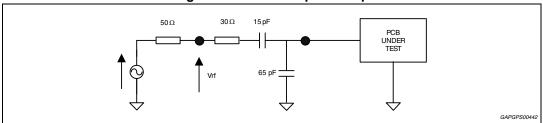
Input level referred to 75 Ω antenna dummy output. F_{rf} = 98.1 MHz, V_{rf} = 60 dB μ V, mono modulation, f_{dev} = 40 kHz, f_{audio} =1 kHz audio. De-emphasis = 50 μ s. Wide-band, not-tuned pre-selection application, unless otherwise specified.

Parameter Test condition Max Units Typ (can be modified by the user) Tuning range FM Eu 87.5 108 MHz (automatic FE alignment available) Tuning step FM Eu (can be modified by the user) 100 kHz (can be modified by the user) Tuning range FM US (automatic FE alignment 87.5 107.9 MHz available) Tuning step FM US (can be modified by the user) 200 kHz (can be modified by the user) 76 90 Tuning range FM Jp (automatic FE alignment MHz available) Tuning step FM Jp (can be modified by the user) 100 kHz (can be modified by the user) Tuning range FM EEu (automatic FE alignment not 65 74 MHz available) Tuning step FM EEu (can be modified by the user) 100 kHz Sensitivity S/N = 26 dB-6 -3 dΒμV @ 10 dBµV, no high-cut, S/N 49 52 dΒ DISS BW = #4 @ 60 dBµV, mono 77 80 dB @ 60 dBµV, Ultimate S/N 82 85 dB Deviation = 75 kHz, mono @ 60 dBµV, stereo 67 70 dB

Table 26. FM overall system performance

DocID026122 Rev 5

35/54


Table 26. FM overall system performance (continued)

Parameter	Test condition	Min	Тур	Max	Units
Distortion	Deviation= 75 kHz	-	0.05	0.1	%
Max deviation	THD=3%	150	166	-	kHz
Adjacent channel Selectivity (D/U ratio)	ΔF =100 kHz, SINAD=30 dB Desired 40 dB μ V, dev = 40 kHz, 400 Hz undesired Dev=40 kHz, 1 kHz	20	30	-	dB
Alternate Channel Selectivity (D/U ratio)	ΔF = 200 kHz, SINAD=30 dB Desired 40 dB μ V, dev = 40 kHz, 400 Hz undesired Dev=40 kHz, 1 kHz	52	62	-	dB
Max. Strong Signal Interferer (D/U ratio)	Desired = 40 dBμV SINAD = 30 dB Undesired ΔF = 1MHz	75	80	-	dB
3 signal performance ("wide-band") application	Desired = 40 dBµV, dev = 40 kHz, 400 Hz, SINAD = 30 dB Undesired1 = ± 400 kHz, dev = 40 kHz, 1 kHz Undesired2 = ± 800 kHz, no mod	101	106	-	dΒμV
	Desired = 40 dBµV, dev = 40 kHz, 400 Hz, SINAD = 30 dB Undesired1 = ±1 MHz, dev = 40 kHz, 1 kHz Undesired2 =±2MHz, no mod	105	110	-	dΒμV
AM suppression	m= 30 %	60	70	-	dB
Logarithmic field strength indicator	@40 dBμV read "FM_Smeter_log"	-0.41 (equiva lent to 37 dBµV)	-0.38	-0.35 (equiv alent to 43 dBµV)	-

3.5.2 AM MW overall system performance

Antenna level equivalence: 0 dB μ V = 1 μ Vrms

Figure 20. AM MW input set-up

Level referred to SG EMF output before antenna dummy; dummy antenna load as shown above F_{rf} = 999 kHz (1000 kHz for US), V_{rf} =74 dB μ V, mod = 30 %, f_{audio} =400 Hz, unless otherwise specified.

Table 27. AM MW overall system performance

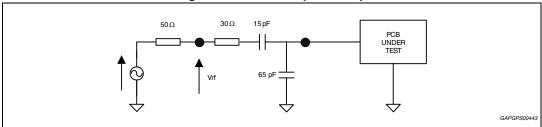
Parameter	Test condition	Min	Тур	Max	Units
Tuning range MW Eu/Jp	(can be modified by the user)	531	-	1629	kHz
Tuning step MW Eu/Jp	(can be modified by the user)	-	9	-	kHz
Tuning range MW US	(can be modified by the user)	530	-	1710	kHz
Tuning step MW US	(can be modified by the user)	-	10	-	kHz
Sensitivity	S/N = 20 dB	-	25	28	dΒμV
Ultimate S/N	@ 80 dBµV	67	72	-	dB
AGC F.O.M.	Ref.=74 dBµV -10dB drop point	(1)	64	-	dB
Distortion	M=80%	-	0.1	0.2	%
Adjacent channel selectivity	ΔF = 9 kHz, SINAD = 26 dB undesired M = 30 % 1 kHz	44	47	-	dB
Alternate channel selectivity	ΔF = 18 kHz, SINAD = 26 dB undesired M = 30 % 1 kHz	48	51	-	dB
Strong signal interferer (1) SNR	$\Delta F = \pm 40 \text{ kHz}$ desired = 40 dB μ V undesired = 110 dB μ V, m = 30 % 1 kHz	8	12	-	dB
Strong signal interferer (1) suppression	$\Delta F = \pm 40 \text{ kHz}$ desired = 40 dB μ V undesired = 110 dB μ V, m = 30 % 1 kHz	-	10	15	dB
Strong signal interferer (1) cross-modulation	ΔF = ±40 kHz desired = 80 dB μ V undesired = 110 dB μ V, m = 30 % 1 kHz maximum SNR of undesired channel	-	1	4	dB

DocID026122 Rev 5

37/54

Table 27. AM MW overall system performance (continued)

Parameter	Test condition	Min	Тур	Max	Units
Strong signal interferer (2) SNR	ΔF = ±400 kHz desired = 40 dB μ V undesired = 110 dB μ V, m = 30 %, 1 kHz	5	11	-	dB
Strong signal interferer (2) suppression	$\Delta F = \pm 400 \text{ kHz}$ desired = 40 dB μ V undesired = 110 dB μ V, m = 30 %, 1 kHz	-	15	18	dB
Strong signal interferer (2) cross-modulation	ΔF = ±400 kHz desired = 80 dB μ V undesired = 110 dB μ V, m = 30 %, 1 kHz maximum SNR of undesired channel	-	1	4	dB
Max. strong signal interferer	Desired = 40 dBμV SINAD = 26dB, blocking<6dB Undesired ΔF = 400 kHz, m = 30 % (crossmod. Test)	90	98	-	dΒμV
Image rejection	-	60	80	-	dB
Logarithmic field strength indicator	@60 dBμV read "AM_SMeter_log"	-0.47 (equiva lent to 57 dBµV	-0.44	-0.41 (equiv alent to 63 dBµV)	-


^{1.} Programmable by software parameters.

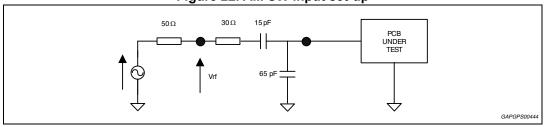
3.5.3 AM LW overall system performance

Antenna level equivalence: 0 dB μ V = 1 μ Vrms

Figure 21. AM LW input set-up

Level referred to SG EMF output before antenna dummy; dummy antenna load as shown above F_{rf} =216 kHz, V_{rf} =74 dB μ V, mod = 30 %, f_{audio} = 400 Hz, unless otherwise specified.

Table 28. AM LW overall system performance


Parameter	Test condition	Min	Тур	Max	Units
Tuning range LW	(can be modified by the user)	144	-	288	kHz
Tuning step LW	(can be modified by the user)	-	1	-	kHz
Sensitivity	S/N = 20 dB	-	30	34	dΒμV
Ultimate S/N	@ 80 dBµV	63	70	-	dB
AGC F.O.M.	Ref. = 74 dBµV -10dB drop point	(1)	64	-	dB
Distortion	M= 80 %	-	0.1	0.2	%
Image rejection	-	60	80	-	dB

^{1.} Programmable by software parameters.

3.5.4 AM SW overall system performance

Antenna level equivalence: 0 dB μ V = 1 μ Vrms

Figure 22. AM SW input set-up

Level referred to SG EMF output before antenna dummy; dummy antenna load as shown above; F_{rf} = 6000 kHz, V_{rf} =74 dB μ V, mod = 30 %, f_{audio} = 400 Hz, unless otherwise specified.

57

DocID026122 Rev 5

Parameter	Test condition	Min	Тур	Max	Units
Tuning range SW	(can be modified by the user)	2300	-	30000	kHz
Tuning step SW	(can be modified by the user)	-	1	-	kHz
Sensitivity	S/N = 20 dB	-	26	32	dΒμV
Ultimate S/N	@ 80 dBμV	63	70	-	dB
AGC F.O.M.	Ref.=74 dBµV -10 dB drop point	(1)	58	-	dB
Distortion	M = 80%	-	0.1	0.2	%
Image rejection	-	60	80	-	dB

Table 29. AM SW overall system performance

3.5.5 WX overall system performance

Antenna level equivalence: 0 dB μ V = 1 μ Vrms (Antenna terminal voltage with 75 Ω dummy load).

Figure 23. WX input set-up

Input level referred to 75 Ω dummy antenna output; antenna dummy as shown above. F_{rf} = 162.475 MHz, V_{rf} = 60 dB μ V, mono modulation, f_{dev} = 3 kHz, f_{audio} = 400 Hz audio. De-emphasis = 75 μ s. Application WX using mixer input 2.Unless otherwise specified.

Parameter Test condition Min Тур Max **Units** Sensitivity S/N = 26 dB-6 -3 $dB\mu V$ Ultimate S/N @ 60 dBµV 70 81 dΒ Distortion Deviation= 4.5 kHz 8.0 1 % Max deviation THD = 3% 5 kHz $\Delta F = 25 \text{ kHz}, \text{SINAD} = 30 \text{dB}$ desired 40 dBµV, Adjacent channel Selectivity 60 70 dB dev = 2.0 kHz, 400 Hz undesired Dev = 2.0 kHz, 1 kHz $\Delta F = 50 \text{ kHz}, \text{SINAD} = 30 \text{dB}$ desired 40 dBµV, Alternate Channel Selectivity 60 70 dΒ dev = 2.0 kHz, 400 Hz undesired Dev = 2.0 kHz,

Table 30. WX overall system performance

40/54 DocID026122 Rev 5

1 kHz

^{1.} Programmable by software parameters.

TDA7786, TDA7786M Front-end registers

4 Front-end registers

All the parameters in this section refer to the programmability of the FE part of the device (registers). The part of the registers that are not described here have either fixed values or values written by the tuner drivers, and are described in the proper technical documentation.

Table 31. Register 0x00

									Re	gist	er r	num	ber											
MS	SB																					LS	SB	Register definition
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
																								AM mixer input selector
																						0	1	Input #1
																						1	0	Input #2
			_	_	_	_			_	_			_	_	_	_	_	_	_			_		AM PIN diode
											0													Internal
											1													External
		_	_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	_	_	_		AM AGC mode
										0														LNA and PIN diode
										1														PIN diode only
																								AM AGC time constant
								0	0															Slow (125 ms with 1 µF)
								0	1															Medium (25ms with 1 μF)
								1	1															Fast (5ms with 1 µF)
																								AM AGC thresholds @ mixin
					0	0	0																	90.2 dBµV @ mixin
					0	0	1																	92.0 dBµV @ mixin
					0	1	0																	93.8 dBµV @ mixin
					0	1	1																	95.6 dBµV @ mixin
					1	0	0																	88.4 dBµV @ mixin
					1	0	1																	86.6 dBµV @ mixin
					1	1	0																	84.8 dBµV @ mixin
					1	1	1																	83 dBµV @ mixin
																								AM AGC attack time constant
			0																					Normal
			1																					Fast

Front-end registers TDA7786, TDA7786M

Table 32. Register 0x01

									Re	gist	er n	um	ber											
M	SB																					LS	SB	Register definition
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
																								FM mixer RF-gain
																				0	0			35 dB
																				0	1			38 dB
																				1	0			39 dB
																				1	1			41 dB
																								FM mixer input
									0	1														Input #1 (single-ended)
									1	0														Input #2 (single-ended)
									1	1														Input #1/2 (differential)
		•	•	•	•	•	•						•	•				•	•	•	•		•	FM AGC output mode
0	0																							Normal
0	1																							Constant 15mA
1	1																							Constant 1mA

TDA7786, TDA7786M

Table 33. Register 0x02

									Re	gist	er N		nbe			<u> </u>				-						
ı	MSE	3																			ı	LSE	3	Regis	ter Definition	
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			l							l	l	l		l	l	<u> </u>			<u> </u>				l	FM RF AGC	Thresholds@ mixin	
																						0	0	88.4 dBµV		
																						0	1	90.2 dBµV	Reg 0x008<14> = 1	
																						1	0	92.0 dBµV	1109 02000 1142 - 1	
																						1	1	93.8 dBµV		
																						0	0	91.4 dBµV		
																						0	1	93.2 dBµV	Reg 0x008<14> = 0	
																						1	0	95.0 dBµV	l ag executive of	
																						1	1	96.8 dBµV		
					1	1		1	1				1											FM IFAGC threshold@IFADCin		
																				0	0			122 dBµV		
																				0	1			124 dBµV		
																				1	0			126 dBµV		
																				1	1			128 dBµV		
			ı							1	ı	1		1	1									FMAGC atta	ack time constant	
																			0					slow		
																			1					fast		
										1														FMAGC de	cay time constant	
																		0						slow		
																		1						fast		
			1		1	1		1	1	1	1	1	1	1	1	1		1	1				1	FM DAC		
																	0							off		
																	1							on		
			ı			ı			ı	1	ı	ı		ı	ı	ı	1		1	1	1			FM DAC VALUE		
									0	0	0	0	0	0	0	0								0		
									0	0	0	0	0	0	0	1								1		
									1	1	1	1	1	1	1	1								255		

Front-end registers TDA7786, TDA7786M

Table 34. Register 0x05

									Re	gist	er N	lun	ıber	•										
ı	MSE	13											LSE	}	Register Definition									
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
																								GPODATA
																							0	low
																							1	high

Table 35. Register 0x08

									Re	gist	er r	num	ber											
M	SB	L 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1												LS	SB	Register definition								
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
																								FMAGC gain select
									0															FM AGC thresholds high
									1															FM AGC thresholds down

5 Weak signal processing

All the parameters in this section refer to the programmability of the DSP part of the device. The typical values are those set by default parameters (start-up without parametric change from main microprocessor); the max and the min values refer to the programmability range. The values are referred to the typical application ('wide-band' in FM). Wherever the possible values are a discrete set, all the possible programmable values are displayed.

5.1 FM IF-processing

5.1.1 Dynamic channel selection filter (DISS)

Table 36. Dynamic channel selection filter (DISS) - discrete set

Symbol	Parameter	Test condition	Min	Тур	Max	Units
	IF filter #10		-	±150	-	kHz
	IF filter #9		-	±120	-	kHz
	IF filter #8		-	±100	-	kHz
	IF filter #7		-	±85	-	kHz
	IF filter #6			±75	-	kHz
DISS BW	IF filter #5	response: - 3dB		±65	-	kHz
	IF filter #4			±60	-	kHz
	IF filter #3			±55	-	kHz
	IF filter #2		-	±45	-	kHz
	IF filter #1		-	±35	-	kHz
	IF filter #0		-	±25	-	kHz

5.1.2 Soft mute

Table 37. Soft mute - continuous set

Symbol	Parameter	Test condition	Min	Тур	Max	Units
SMsp	Start point vs. field strength	audio atten = 1 dB read "FM_SoftMute" no adjacent channel present	0	6	20	dΒμV
SMep	End point vs. field strength	audio atten = SMd + 1 dB read "FM_SoftMute" no adjacent channel present	-6	-6	10	dΒμV
SMd	Depth		-30	-15	0	dB
SMtauatt	Field strength LPF cut-off frequency for soft mute activation		0.1	100	4000	Hz
SMtaurel	Field strength LPF cut-off frequency for soft mute release		0.1	1	4000	Hz

DocID026122 Rev 5

5.1.3 Adjacent channel mute

Table 38. Adjacent channel mute - continuous set

Symbol	Parameter	Test condition	Min	Тур	Max	Units
ACMd	Depth	-	SMd	0	0	dB

5.1.4 Stereo blend

Table 39. Stereo blend - continuous set

Symbol	Parameter	Test condition	Min	Тур	Max	Units
MaxSep	Maximum stereo separation	field strength = 80 dBµV, pilot deviation = 6.75 kHz	0	40	50	dB
SBFSsp	Start point vs. field strength	separation = MaxSep - 1 dB no multipath present	20	50	60	dΒμV
SBFSep	End point vs. field strength	separation = 1 dB no multipath present	20	30	60	dΒμV
SBFStM2S	Field strength-related transition time from mono to stereo	V _{rf} step-like variation from 20 dBμV to 80 dBμV	0.001	3	20	S
SBFStS2M	Field strength-related transition time from stereo to mono	V _{rf} step-like variation from 80 dBμV to 20 dBμV	0.001	0.5	20	S
SBMPsp	Start point vs. multipath	separation = MaxSep - 1 dB equivalent 19 kHz AM modulation depth; field strength = 80 dBµV	5	10	80	%
SBMPep	End point vs. multipath	separation = 1 dB equivalent 19 kHz AM modulation depth; field strength = 80 dBµV	5	30	80	%
SBMPtM2S	Multipath-related transition time from mono to stereo	V _{rf} step-like variation from 20 dBµV to 80 dBµV	0.001	1	20	s
SBMPtS2M	Multipath-related transition time from stereo to mono	V _{rf} step-like variation from 80 dBµV to 20 dBµV	0.001	0.001	20	s
Pil ThrM2S	Pilot detector stereo threshold	Threshold on pilot tone deviation for mono-stereo transition	0.8	2.74	-	kHz
Pil ThrHyst	Pilot detector threshold hysteresis	Difference in Pil. det. deviation threshold for stereo to mono transition compared to PilThrM2S	-	0.01	-	kHz

57/

46/54 DocID026122 Rev 5

5.1.5 High cut control

Table 40. High cut control - continuous set

Symbol	Parameter	Test condition	Test condition Min Typ		Max	Units
HCFSsp	Start point vs. field strength	minimum RF level for widest HC filter (filter # 7) no multipath present	HC filter (filter # 7) 0 50 50		dΒμV	
HCFSep	End point vs. field strength	maximum RF level for narrowest HC filter (filter # 0) no multipath present	0	0 30 40		dΒμV
HCFStW2N	Field strength-related transition time from wide to narrow band	V _{rf} step-like variation from 60 dBμV to 10 dBμV	(1)		-	
HCFStN2W	Field strength-related transition time from narrow to wide band	V _{rf} step-like variation from 0 dBμV to 60 dBμV	(1) 14 100		s	
HCMPsp	Start point vs. multipath	minimum RF level for widest HC filter (filter # 7) equivalent 19 kHz AM 5 10 modulation depth; field strength = 80 dBµV		10	150 ⁽²⁾	%
НСМРер	End point vs. multipath	maximum RF level for narrowest HC filter (filter # 0) equivalent 19 kHz AM modulation depth; field strength = 80 dBµV	5	30	150 ⁽²⁾	%
HCMPtN2W	Multipath-related transition time from narrow to wide band	V _{rf} step-like variation from 20 dBμV to 80 dBμV	0.001	0.001	20	s
HCMPtW2N	Multipath-related transition time from wide to narrow	V _{rf} step-like variation from 80 dBµV to 20 dBµV	0.001	0.001	20	s
HCmaxBW	Maximum cut-off frequency of high cut filter bank	Filter #7, -3 dB response frequency, input signal with pre-emphasis HCmin BW 14 18		18	kHz	
HCminBW	Minimum cut-off frequency of high cut filter bank	Filter #0, -3 dB response frequency, input signal with pre-emphasis HCma xBW			kHz	
HCnumFilt	Number of discrete HC filters	-	-	8 (3)	-	-

^{1.} Depends only on field strength filter time constant.

^{2.} Means that 100% equivalent 19 kHz AM modulation depth will not achieve full band narrowing.

^{3.} Intermediate filters (#6 - #1) cut-off frequencies exponentially spaced between HCmaxBW and HCminBW.

Table 41. De-emphasis filter - continuous set

Symbol	Parameter Test condition		Min	Тур	Max	Units
DEtc	De-emphasis time constant 1	-	-	50	-	μs
DLIC	De-emphasis time constant 2	-	-	75	-	μδ

5.1.6 Stereo decoder

Table 42. Stereo decoder - continuous set

Symbol	Parameter	Test condition	Min	Тур	Max	Units
PilSup	Pilot signal suppression	Pilot 9%, 19 kHz, ref = 40 kHz	-	60	-	dB
SubcSup		f = 38 kHz	-	70	-	dB
	Subcarrier suppression	f = 57 kHz	-	70	-	dB
		f = 76 kHz	-	80	-	dB

5.2 AM IF-processing

5.2.1 Channel selection filter

Table 43. Channel selection filter

Symbol	Parameter	Test condition	Min	Тур	Max	Units
CSF BW	Channel selection filter BW	response: - 3dB	-	±3.7	-	kHz

5.2.2 Soft mute

Table 44. Soft mute - continuous set

Symbol	Parameter	Min	Тур	Max	Units	
SMsp	Start point vs. field strength	audio atten = 1 dB read "FM_SoftMute" no adjacent channel present	0	25	40	dΒμV
SMep	End point vs. field strength	audio atten = SMd + 1 dB read "FM_SoftMute" no adjacent channel present	0	0	30	dΒμV
SMd	Depth	-	-40	-24	0	dB
SMtauatt	Transition time for field strength-dependent soft mute activation	-	0.001	0.1	10	s
SMtaurel	Transition time for field strength-dependent soft mute release	-	0.001	3	10	S

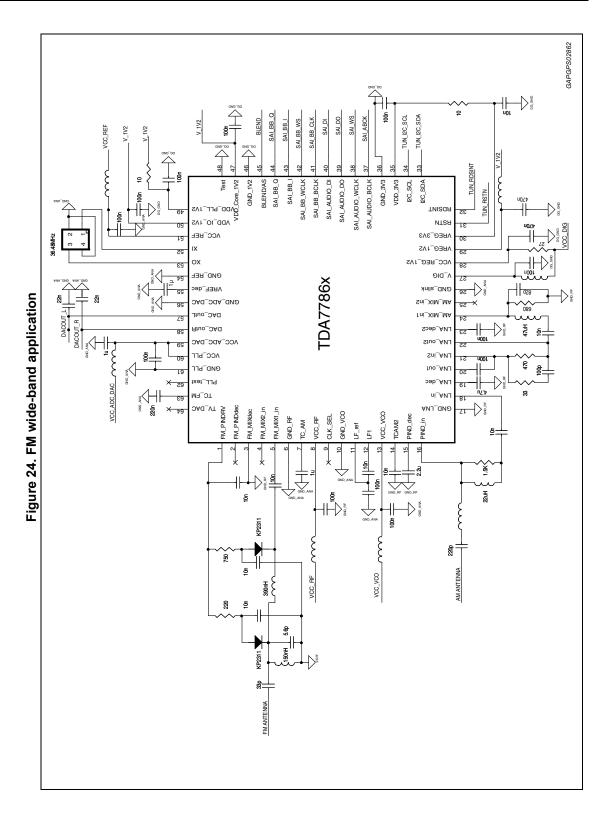

5.2.3 High cut control

Table 45. High cut control - continuous set

Symbol	Parameter Test condition		Min	Тур	Max	Units
HCFSsp	Start point vs. field strength	minimum RF level for widest HC filter (filter # 7) no multipath present	0	40	50	dΒμV
HCFSep	End point vs. field strength	maximum RF level for narrowest HC filter (filter # 0) no multipath present	0	30	50	dΒμV
HCFStW2N	Field strength-related transition time from wide to narrow band	V _{rf} step-like variation from 60 dBμV to 10 dBμV	0.001	0.2	20	s
HCFStN2W	Field strength-related transition time from narrow to wide band	V _{rf} step-like variation from 0 dBμV to 60 dBμV	0.001	10	20	s
HCmaxBW	Maximum cut-off frequency of high cut filter bank	Filter #7, -3 dB response frequency, input signal with pre-emphasis	HCmin BW	14	18	kHz
HCminBW	Minimum cut-off frequency of high cut filter bank	Filter #0, -3 dB response frequency, input signal with pre-emphasis	1	3	HCma xBW	kHz
HCnumFilt	Number of discrete HC filters	-	-	8	-	-

Basic application schematic

ဖ

50/54 DocID026122 Rev 5

Package information 7

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

7.1 LQFP64 (10x10x1.4 mm) package information

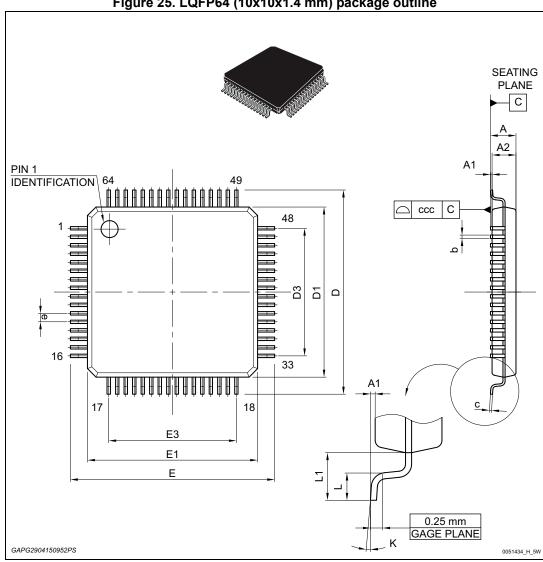


Figure 25. LQFP64 (10x10x1.4 mm) package outline

Package information TDA7786, TDA7786M

Table 46. LQFP64 (10x10x1.4 mm) package mechanical data

			Dimer	nsions		
Ref		Millimeters			Inches ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	-	-	1.60	-	-	0.0630
A1	0.05	-	0.15	0.0020	-	0.0059
A2	1.350	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09	-	0.20	0.0035	-	0.0079
D	11.80	12.00	12.20	0.4646	0.4724	0.4803
D1	9.80	10.00	10.20	0.3858	0.3937	0.4016
D3	-	7.50	-	-	0.2953	-
Е	11.80	12.00	12.20	0.4646	0.4724	0.4803
E1	9.80	10.00	10.20	0.3858	0.3937	0.4016
E3	-	7.50	-	-	0.2953	-
е	-	0.50	-	-	0.0197	-
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	-	1.00	-	-	0.0394	-
K			0° (min.), 3.5°	(typ.) 7° (max.))	
ccc	-	-	0.08	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

TDA7786, TDA7786M Revision history

8 Revision history

Table 47. Document revision history

Date	Revision	Changes		
24-Mar-2014	1	Initial release.		
29-May-2014	2	Updated Table 3: Suggested GPIO direction and driving capability on page 15.		
23-Feb-2016	3	Document status promoted from preliminary data to production data. Added 'T _j ' parameter in <i>Table 16: General key parameters on page 28</i> , and changed in note 2 the value of resistance from 15 to 27 Ω. Updated: - Figure 24: FM wide-band application on page 50 (pin 28 - from 15 to 27 Ω); - Section 7: Package information.		
27-May-2016	4	Updated: — Title in cover page; — Features on page 1 and added new bullet "AEC-Q100 qualified"; — Description on page 1; — Table 1: Device summary on page 1; — Table 2: Pin description; — Section 2.7: Audio D/A converters — Section 2.12: Digital high speed IO interface pins — Section 2.13: Multipath reduction; — Section 2.14: HD Radio™ connectivity; — Section 2.18: Digital-down-converter (DDC) Removed section 2.14 Antenna switching.		
05-Oct-2016	5	The publication scope change from internal to public document, no content change.		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved