Contents

1	Electrical ratings
2	Electrical characteristics 4 2.1 Electrical characteristics (curves) 6
3	Z.1 Electrical characteristics (curves)
4	Package mechanical data 10
5	Revision history

1 Electrical ratings

Symbol	Dovometov	Value			Unit
Symbol	Parameter	TO-247 TO-220FP		TO-3PF	Unit
V_{CES}	Collector-emitter voltage ($V_{GE} = 0$)		600		V
Ι _C	Continuous collector current at $T_C = 25$ °C	60	19	36	A
Ι _C	Continuous collector current at $T_C = 100$ 35121		18	A	
$I_{CP}^{(1)}$	Pulsed collector current	150		Α	
I _{CL} ⁽²⁾	Turn-off latching current	80			А
V_{GE}	Gate-emitter voltage		± 20		V
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)		2500		v
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	200	40	88	W
T _{stg}	Storage temperature	- 55 to 150		ာ့	
Тj	Operating junction temperature				

Table 2.Absolute maximum ratings

1. Pulse width limited by maximum junction temperature and turn-off within RBSOA

2. V_{CLAMP} = 80% (V_{CES}), V_{GE} = 15 V, R_G = 10 Ω , T_J = 150 °C

Symbol	Parameter		Value		Unit
Symbol	Falameter	ТО-247 ТО-220FP ТО-3Р		TO-3PF	Onit
R _{thj-case}	Thermal resistance junction-case	0.63	3.1	1.41	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	62.5	50	°C/W

2 Electrical characteristics

 $(T_J = 25 \ ^{\circ}C \text{ unless otherwise specified})$

Table 4.	Static
	Static

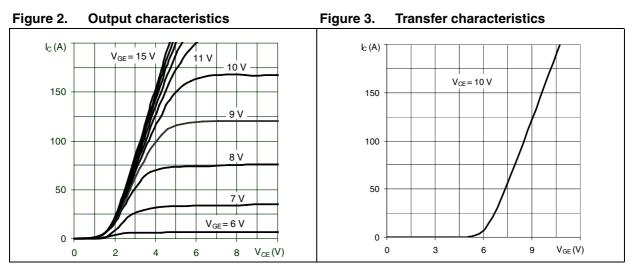
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 1 mA	600			V
V	Collector-emitter	V _{GE} = 15 V, I _C = 20 A		2	2.5	v
V _{CE(sat)}	saturation voltage	V _{GE} = 15V, I _C = 20 A,T _J = 125 °C		1.65		v
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 1 \text{ mA}$	3.75		5.75	V
lana	Collector cut-off current	V _{CE} = 600 V			250	μA
ICES	(V _{GE} = 0)	V _{CE} = 600 V, T _J = 125 °C			1	mA
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	$V_{GE} = \pm 20 V$			± 100	nA

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies} C _{oes} C _{res}	Input capacitance Output capacitance Reverse transfer capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0	-	2400 235 50	-	pF pF pF
Q _g Q _{ge} Q _{gc}	Total gate charge Gate-emitter charge Gate-collector charge	$V_{CE} = 400 \text{ V}, I_C = 20 \text{ A},$ $V_{GE} = 15 \text{ V},$ (see Figure 18)	-	140 13 52	-	nC nC nC

	entening enten (inductive lodd)					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 400 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ (see Figure 17)	-	30 15 1650	-	ns ns A/µs
t _{d(on)} t _r (di/dt) _{on}	Turn-on delay time Current rise time Turn-on current slope	$V_{CC} = 400 \text{ V}, I_C = 20 \text{ A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_J = 125 \text{ °C} (see Figure 17)$	-	30 15 1600	-	ns ns A/µs
$t_r(V_{off}) \ t_d(_{off}) \ t_f$	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A},$ $R_{GE} = 10 \Omega, V_{GE} = 15 \text{ V}$ (see Figure 17)	-	30 175 40	-	ns ns ns
t _r (V _{off}) t _d (_{off}) t _f	Off voltage rise time Turn-off delay time Current fall time	$V_{CC} = 400 \text{ V}, I_C = 20 \text{ A},$ $R_{GE} = 10 \Omega, V_{GE} = 15 \text{ V},$ $T_J = 125 \text{ °C}$ <i>(see Figure 17)</i>	-	50 225 70	-	ns ns ns

Table 6. Switching on/off (inductive load)


Table 7. Switching energy (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _{on} ⁽¹⁾	Turn-on switching losses	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A}$		290		μJ
E _{off}	Turn-off switching losses	$R_{G} = 10 \Omega$, $V_{GE} = 15 V$,	-	185		μJ
E _{ts}	Total switching losses	(see Figure 19)		475		μJ
E _{on} ⁽¹⁾	Turn-on switching losses	$V_{CC} = 400 \text{ V}, I_{C} = 20 \text{ A}$		420		μJ
E _{off}	Turn-off switching losses	R_{G} = 10 Ω, V_{GE} = 15 V,	-	350	530	μJ
E _{ts}	Total switching losses	T _J = 125 °C <i>(see Figure 19)</i>		770		μJ

1. Eon is the turn-on losses when a typical diode is used in the test circuit in *Figure 19*. If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs and diode are at the same temperature (25 °C and 125 °C). Eon includes diode recovery energy.

Electrical characteristics (curves) 2.1

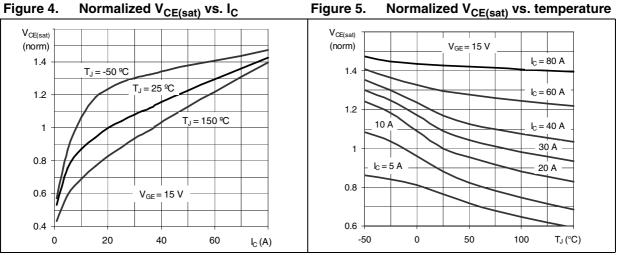
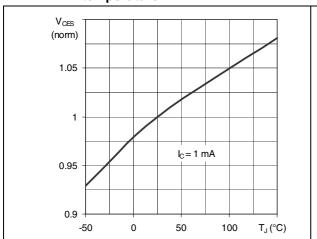
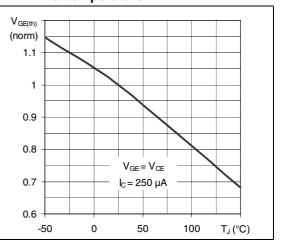
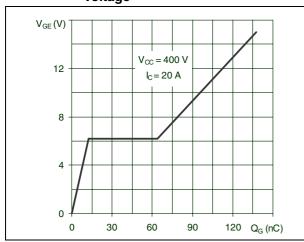
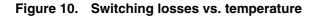




Figure 6. Normalized breakdown voltage vs. Figure 7. temperature

Normalized gate threshold voltage vs. temperature




6/17

Doc ID 17490 Rev 3

Figure 8. Gate charge vs. gate-emitter voltage

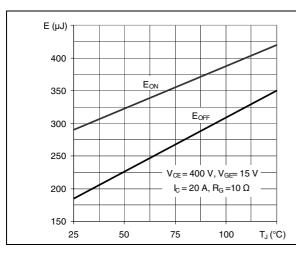


Figure 12. Switching losses vs. collector current

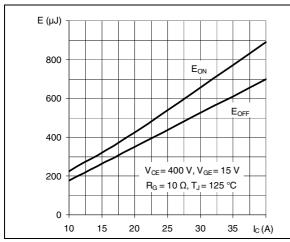
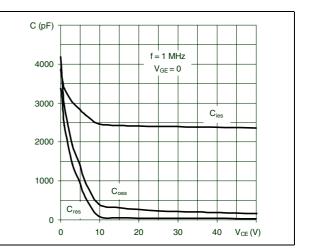
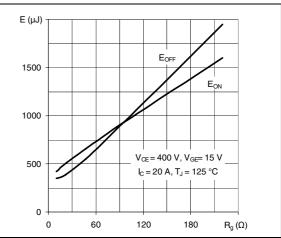
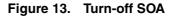
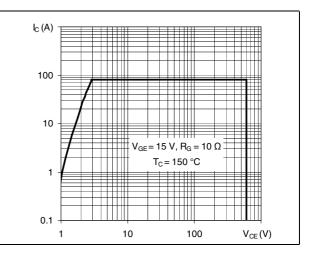
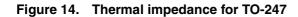


Figure 9. Capacitance variations


Figure 11. Switching losses vs. gate resistance

57

Figure 15. Thermal impedance for TO-220FP

10-1

0.05

0.01

10-2

 $\delta = t_p / \tau$

100

 $Z_{th} = k R_{thJ-c}$

10¹

 $\delta = 0.5$

0.2

0.1

TII

10-4

SINGLE PULSE

10-3

к

10 -

10 -2

10⁻³

тогрјк

† p (s)

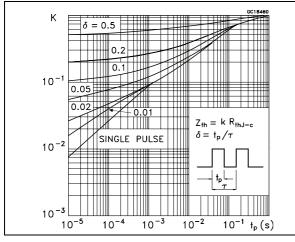
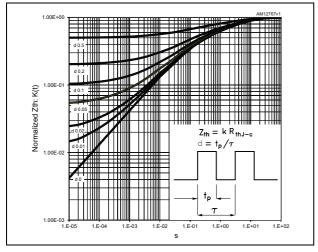



Figure 16. Thermal impedance for TO-3PF

3 Test circuits

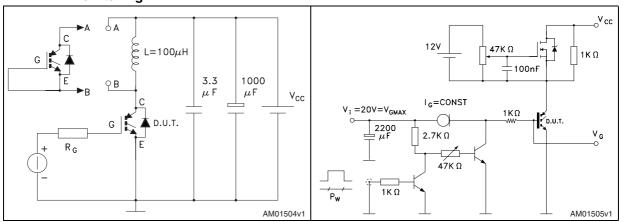
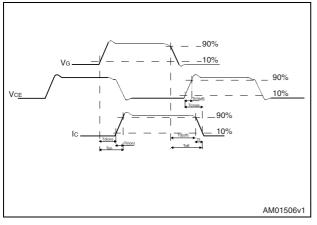



Figure 18. Gate charge test circuit

Figure 17. Test circuit for inductive load switching

Figure 19. Switching waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Table 8.	TO-220FP	mechanical data

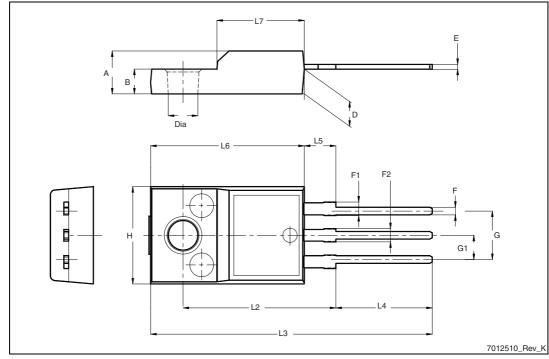


Figure 20. TO-220FP drawing

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е		5.45	
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S		5.50	

Table 9.TO-247 mechanical data

12/17

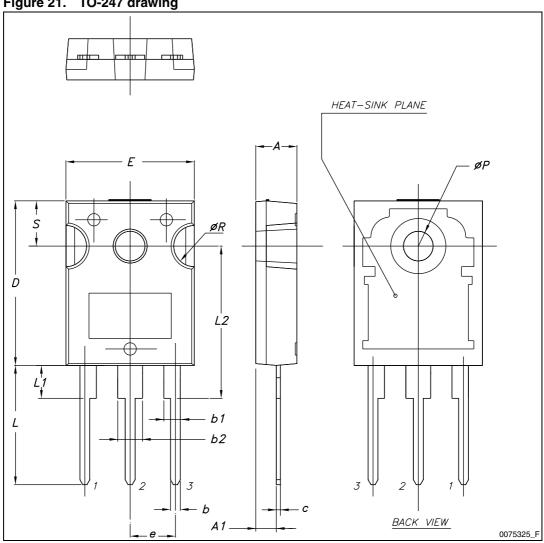


Figure 21. TO-247 drawing

Dim.	mm		
	Min.	Тур.	Max.
А	5.30		5.70
С	2.80		3.20
D	3.10		3.50
D1	1.80		2.20
E	0.80		1.10
F	0.65		0.95
F2	1.80		2.20
G	10.30		11.50
G1		5.45	
Н	15.30		15.70
L	9.80	10	10.20
L2	22.80		23.20
L3	26.30		26.70
L4	43.20		44.40
L5	4.30		4.70
L6	24.30		24.70
L7	14.60		15
Ν	1.80	1.80 2.20	
R	3.80		4.20
Dia	3.40		3.80

Table 10.TO-3PF mechanical data

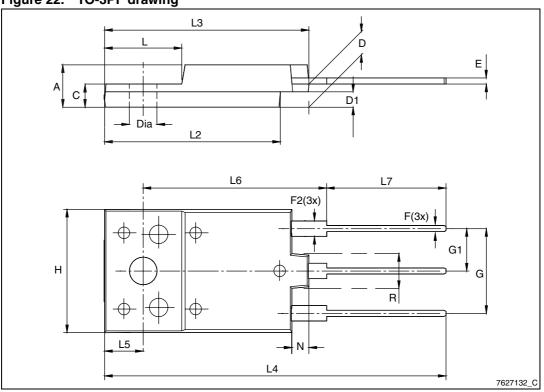


Figure 22. TO-3PF drawing

5 Revision history

Table 11.Document revision history

Date	Revision	Changes	
17-May-2010	1	Initial release.	
14-Dec-2010	2	2 Document status promoted from preliminary data to datasheet. Inserted new order code STGF35HF60W in TO-220FP package.	
24-Jul-2012	3	Inserted new order code STGFW35HF60W in TO-3PF package.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17490 Rev 3