PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM5018	TSSOP-16	-40°C to +85°C	SGM5018YTS/TR	SGM5018 YTS XXXXX	Tape and Reel, 3000

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

V ₊ to GND	0.3V to 6V
Analog, Digital Voltage Range (1)	0.3V to (V ₊) + 0.3V
Continuous Current NO, NC, or COM	±100mA
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s)	+260°C
ESD Susceptibility	
HBM	4000V
MM	400V

NOTE:

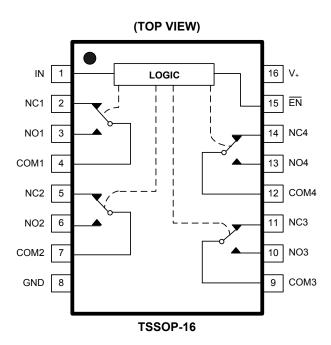
1. Signals on NC, NO, or COM or IN_X exceeding V_+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational section of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.


ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time.

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
16	V ₊	Power Supply.
8	GND	Ground.
1	IN	Digital Control Pin to Connect the COM Terminal to the NO or NC Terminals.
15	ĒN	Digital Enable Input. Normally connect to GND. Drive to logic high to set all switches off.
4, 7, 9, 12	COM _X	Common Terminal.
3, 6, 10, 13	NO _X	Normally-Open Terminal.
2, 5, 11, 14	NC _X	Normally-Closed Terminal.

NOTE: NO_X , NC_X and COM_X terminals may be an input or output.

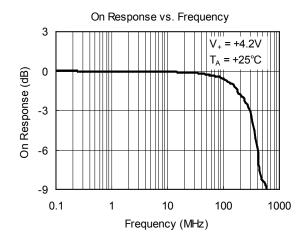
FUNCTION TABLE

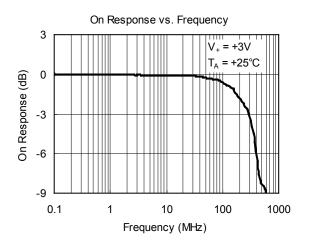
EN	IN	NO	NC			
L	L	OFF	ON			
L	Н	ON	OFF			
Н	√	All Switches Open				

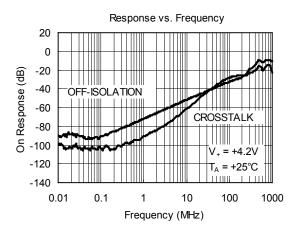
NOTE: $\sqrt{\ }$ = Don't Care.

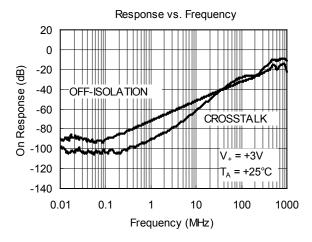
ELECTRICAL CHARACTERISTICS

 $(V_{+} = 4.5V \text{ to } 5.5V, \text{ GND} = 0V, V_{IH} = 1.6V, V_{IL} = 0.5V, \text{ Full} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}.$ Typical values are at $V_{+} = 5V, T_{A} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

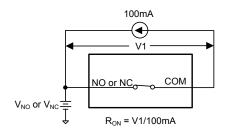

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	V_{NO},V_{NC},V_{COM}			Full	0		V+	V
On Posistanos	В	$V_{+} = 4.5V$, V_{NO} or $V_{NC} = 1.2V$,		+25°C		4.5	7	Ω
On-Resistance	R _{on}	I _{COM} = -100mA, Test Circuit 1		Full			8	Ω
On-Resistance Match	۸D	$V_{+} = 4.5V$, V_{NO} or $V_{NC} = 1.2V$,		+25°C		0.8	3.6	Ω
Between Channels	ΔR_{ON}	I _{COM} = -100mA, Test Circuit 1		Full			4.2	Ω
On-Resistance Flatness	R _{FLAT(ON)}	$V_{+} = 4.5V$, V_{NO} or $V_{NC} = 1.2V$, 4.5V,		+25°C		3	3.7	Ω
On redictarioe ridiness	T FLAT(ON)	I _{COM} = -100mA, Test Circuit 1		Full			4.5	Ω
Source Off Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 5.5 \text{V}$, V_{NO} or $V_{NC} = 3.3 \text{V}/0.3 \text{V}$, $V_{COM} = 0.3 \text{V}/3.3 \text{V}$		Full			1	μΑ
Channel On Leakage Current	$I_{NC(ON)}, I_{NO(ON)}, I_{COM(ON)}$	$V_{+} = 5.5$ V, $V_{COM} = 0.3$ V/3.3V, V_{NO} or $V_{NC} = 0.3$ V/3.3V, or floating		Full			1	μΑ
DIGITAL INPUTS								
Input High Voltage	V _{INH}			Full	1.6			V
Input Low Voltage	V _{INL}			Full			0.5	V
Input Leakage Current	I _{IN}	V ₊ =5.5V, V _{IN} = 0V or 5.5V		Full			1	μΑ
DYNAMIC CHARACTERISTIC	s							
Turn-On Time	t _{on}	V_{NO} or $V_{NC} = 2V$, $C_L = 35pF$, $R_L = 300\Omega$,		+25°C		40		ns
Turn-Off Time	t _{OFF}	Test Circuit 2		+25°C		30		ns
Charge Injection Select Input to Common I/O	Q	V_G = GND, R_G = 0 Ω , Q = C_L × V_{OUT} , C_L Test Circuit 3	= 1nF,	+25°C		20		рС
Break-Before-Make Time Delay	t _D	V_{NO} or V_{NC} = 3V, R_L = 300 Ω , C_L = 35pF, Test Circuit 4	i	+25°C		18		ns
Off la slation	0	$R_L = 50\Omega$, $f = 10MHz$, $V_{BIAS} = 350mV$,	1MHz	+25°C		-70		dB
Off Isolation	O _{ISO}	Signal = 0dBm, Test Circuit 5	10MHz	+25°C		-50		dB
Channel-to-Channel	~	$R_L = 50\Omega$, $f = 10MHz$, $V_{BIAS} = 350mV$,	1MHz	+25°C		-90		dB
Crosstalk	X_{TALK}	Signal = 0dBm, Test Circuit 6	10MHz	+25°C		-60		dB
-3dB Bandwidth	BW	$R_L = 50\Omega$, Signal = 0dBm, $V_{BIAS} = 350$ mV, Test Circuit 7		+25°C		300		MHz
Channel On Capacitance	C _{ON}			+25°C		42		pF
POWER REQUIREMENTS				•	•	•	•	
Power Supply Range	V ₊			Full	1.8		5.5	V
Power Supply Current	I+	V ₊ = 5.5V, V _{IN} = 0V or V ₊		Full			1	μA

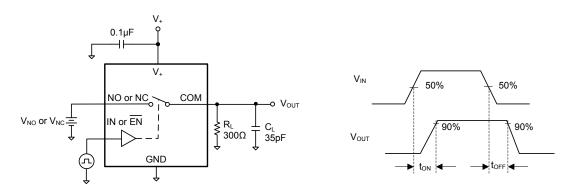

ELECTRICAL CHARACTERISTICS (continued)

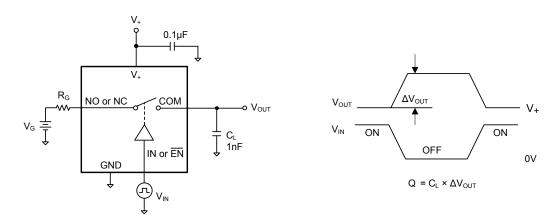

 $(V_{+} = 2.7V \text{ to } 3.6V, V_{IH} = 1.6V, V_{IL} = 0.4V, \text{ Full} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$. Typical values are at $V_{+} = 3V, T_{A} = +25^{\circ}\text{C}$, unless otherwise noted.)

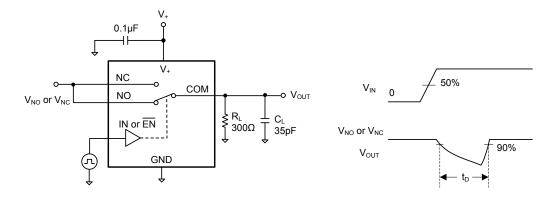

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH				•				
Analog Signal Range	V_{NO},V_{NC},V_{COM}			Full	0		V+	V
On-Resistance	R _{ON}	$V_{+} = 2.7V$, V_{NO} or $V_{NC} = 1.2V$,		+25°C		11	15.5	Ω
On-Nesistance	NON	I _{COM} = -100mA, Test Circuit 1		Full			18.5	Ω
On-Resistance Match	ΔR_ON	$V_{+} = 2.7V$, V_{NO} or $V_{NC} = 1.2V$,		+25°C		1.6	4	Ω
Between Channels	ANON	I _{COM} = -100mA, Test Circuit 1		Full			4.6	Ω
On-Resistance Flatness	R _{FLAT(ON)}	$V_{+} = 2.7V$, V_{NO} or $V_{NC} = 1.2V$, 4.5V,		+25°C		7	9.4	Ω
On recolotance riathess	FLAT(ON)	I _{COM} = -100mA, Test Circuit 1		Full			13	Ω
Source Off Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 3.6V$, V_{NO} or $V_{NC} = 3.3V/0.3V$, $V_{COM} = 0.3V/3.3V$					1	μA
Channel On Leakage Current	$I_{NC(ON)}, I_{NO(ON)},$ $I_{COM(ON)}$	$V_{+} = 3.6V$, $V_{COM} = 0.3V/3.3V$, V_{NO} or $V_{NC} = 0.3V/3.3V$, or floating	Full			1	μA	
DIGITAL INPUTS				•	•	•		
Input High Voltage	V_{INH}			Full	1.5			V
Input Low Voltage	V _{INL}			Full			0.4	V
Input Leakage Current	I _{IN}	V ₊ = 5.5V, V _{IN} = 0V or 3.6V		Full			1	μΑ
DYNAMIC CHARACTERISTIC	S							
Turn-On Time	t _{on}	V_{NO} or $V_{NC} = 2V$, $C_L = 35pF$, $R_L = 3000$	Ω,	+25°C		48		ns
Turn-Off Time	t _{OFF}	Test Circuit 2		+25°C		45		ns
Charge Injection Select Input to Common I/O	Q	V_G = GND, R_G = 0 Ω , Q = $C_L \times V_{OUT}$, C_L Test Circuit 3	= 1nF,	+25℃		20		pC
Break-Before-Make Time Delay	t _D	V_{NO} or V_{NC} = 2V, R_L = 300 Ω , C_L = 35pF Test Circuit 4	,	+25℃		20		ns
0".1 .1 "	0	$R_L = 50\Omega$, $f = 10MHz$, $V_{BIAS} = 350mV$,	1MHz	+25°C		-70		dB
Off Isolation	O _{ISO}	Signal = 0dBm, Test Circuit 5	10MHz	+25°C		-50		dB
Channel to Channel Creatally	V	$R_1 = 50\Omega$, $f = 10MHz$, $V_{BIAS} = 350mV$, 1MH		+25°C		-90		dB
Channel-to-Channel Crosstalk	X_{TALK}	Signal = 0dBm, Test Circuit 6				-60		dB
-3dB Bandwidth	BW	R_L = 50 Ω , Signal = 0dBm, V_{BIAS} = 350r Test Circuit 7	R_L = 50Ω, Signal = 0dBm, V_{BIAS} = 350mV, Test Circuit 7			300		MHz
Channel On Capacitance	C _{ON}			+25°C		42		pF

TYPICAL PERFORMANCE CHARACTERISTICS

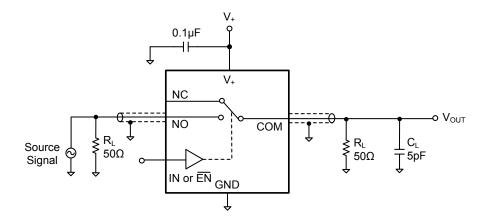


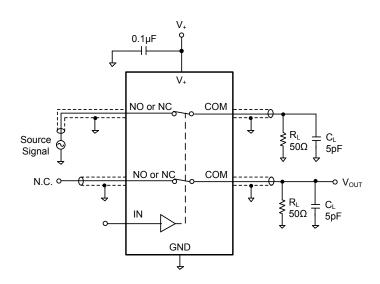



TEST CIRCUITS

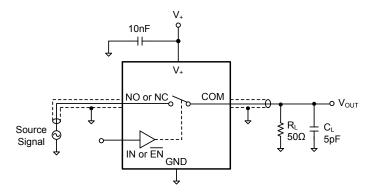

Test Circuit 1. On-Resistance

Test Circuit 2. Switching Times


Test Circuit 3. Charge Injection


Test Circuit 4. Break-Before-Make Time Delay, tD

TEST CIRCUITS (continued)



Test Circuit 5. Off Isolation

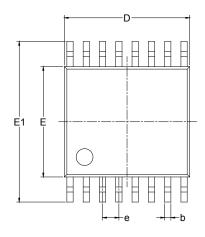
Channel-to-Channel Crosstalk = $-20 \times log - \frac{V_{NO} \text{ or } V_{NC}}{V_{OUT}}$

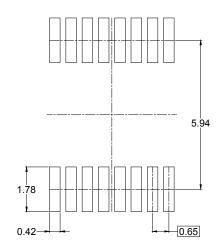
Test Circuit 6. Channel-to-Channel Crosstalk

Test Circuit 7. -3dB Bandwidth

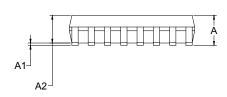
SGM5018

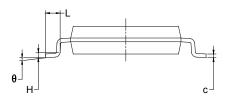
REVISION HISTORY


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

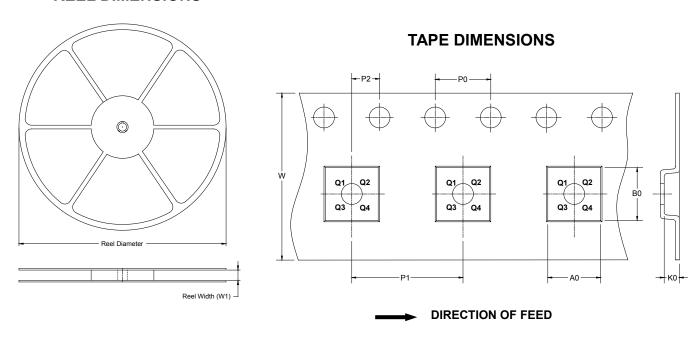

JANUARY 2013 - REV.A.3 to REV.A.4

Added Recommended Land Pattern Information	9
Added Tape and Reel Information section	10, 11
MAY 2011 – REV.A.2 to REV.A.3	
Updated Package Outline Dimensions	9
DECEMBER 2008 – REV.A.1 to REV.A.2	
Changes to Absolute Maximum Ratings section	2
MAY 2008 – REV.A to REV.A.1	
Changed Electrical Characteristics section	3, 4
	5, 6




PACKAGE OUTLINE DIMENSIONS TSSOP-16

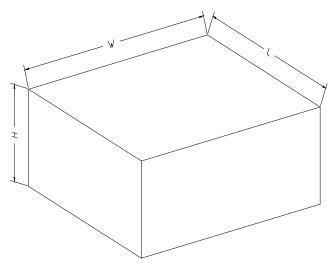
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	_	nsions imeters	Dimen In Inc	
,	MIN	MAX	MIN	MAX
Α		1.200		0.047
A1	0.050	0.150	0.002	0.006
A2	0.800	1.050	0.031	0.041
b	0.190	0.300	0.007	0.012
С	0.090	0.200	0.004	800.0
D	4.860	5.100	0.191	0.201
E	4.300	4.500	0.169	0.177
E1	6.200	6.600	0.244	0.260
е	0.650) BSC	0.026	BSC
L	0.500	0.700	0.02	0.028
Н	0.25	TYP	0.01	TYP
θ	1°	7°	1°	7°

TAPE AND REEL INFORMATION

REEL DIMENSIONS



NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSSOP-16	13"	12.4	6.90	5.60	1.20	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5