

Hermosa Beach • CA • 90254 Tel: 949.610.0008 RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RFD22301 Pinout - Top View

Email your application questions to support@rfdigital.com

REDIGITAL www.RFdigital.com 1601 Pacific Coast Hwy • Suite 290 Hermosa Beach • CA • 90254 Tel: 949.610.0008 RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

Electrical Specifications						
Description	Min	Nom	Max	Notes		
VDD - Supply Voltage	2.1 V	3.0 V	3.6 V			
ESD - Human Body Model Class 2			4 kV			
Built-in Crystal Frequency		16 MHz				
Crystal Frequency Tolerance			+/- 10ppm			
Built-in RC Oscillator Frequency		32.768 kHz				
Built-in RC Oscillator Tolerance		+/- 2%				
Built-in RC Oscillator Tolerance after calibration			250 ppm			
Reset pin time for successful reset	600 ns					
Radio Operating Frequencies	2402 MHz		2481 MHz	1 MHz channel spacing		
Radio Frequency Deviation @ BLE	+/- 225 kHz	+/- 250 kHz	+/- 275 kHz			
Radio On-Air data rate	250 kbps		2000 kbps			
Radio Output Power	-30 dBm		+4 dBm			
Receiver Sensitivity @ BLE		-93 dBm		Ideal transmitter		
Radio RSSI Accuracy			+/- 6 dB			
UART Baud Rate	1.2 kbps		921.6 kbps			
SPI Bit Rate	0.125 Mbps		8 Mbps			
TWI Bit Rate	100 kbps		400 kbps			
Analog-to-Digital Converter (ADC) ENIB	10 bit					
ADC Internal Reference Voltage	1.182 V	1.20 V	1.218 V			
ADC External Reference Voltage	0.83 V	1.20 V	1.30 V			
Internal Temperature Sensor Range	-25 °C		75 °C			
Internal Temperature Sensor Accuracy	-4 °C		4° C			
General Purpose I/O (GPIO) input high voltage	0.7 * VDD		VDD			
General Purpose I/O (GPIO) input low voltage	VSS		0.3 * VDD			
Output standard drive current		0.5 mA				
Output high drive current		5 mA		Max 3 pins		
Pull-up resistance	11k	13k	16k			
Pull-down resistance	11k	13k	16k			
ULP Current with RC OSC Running	1	4uA				
Transmit Current	1	12mA				
Receive Current	1	12mA				
ARM CPU Running Current		4mA				

www.RFdigital.com • sales@rfdigital.com 1601 Pacific Coast Hwy • Suite 290 Hermosa Beach • CA • 90254 Tel: 949.610.0008 RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

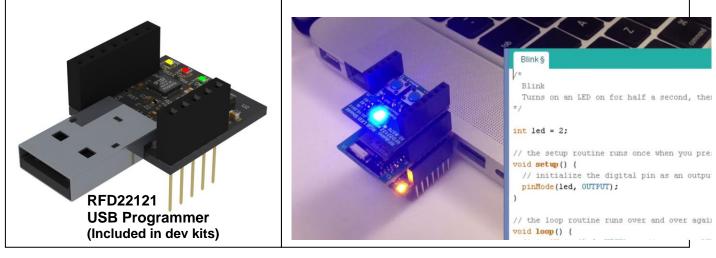
RFD22301 IDE & Programming Tools

The RFD22301 can be programmed using different IDEs, however we recommend using the Arduino based RFduino IDE. Download RFduino Quick Start Guide: <u>http://forum.rfduino.com/index.php?topic=14.0</u> Or go to <u>http://RFduino.com/</u> and click on Forum.

Using the free Arduino IDE with RFduino extensions, you can instantly load different pre-written examples and be up and running with your applications quickly and easily.

Open Source iOS sample apps for iPhone and iPad are available in the Apple App Store In the http://www.RFduino.com there is already an Android sample app published, it is the first of many others to follow which are contributed by the RFduino community.

Download RFduino library: <u>https://github.com/RFduino/RFduino</u> Or go to <u>http://RFduino.com</u> and click on Download.


	File Edit Sketch Tools Help New	Ctrl+N		
	Open	Ctrl+0		2
	Sketchbook	Cui+O		
	Examples	•	01.Basics	~
Г	Close	Ctrl+W	02.Digital	
H.	Save	Ctrl+S	03.Analog 🕨 🕨	
	Save As	Ctrl+Shift+S	04.Communication +	
	Upload	Ctrl+U	05.Control	
	Upload Using Programmer	Ctrl+Shift+U	06.Sensors	
	Page Setup	Ctrl+Shift+P	07.Display	
Print		Ctrl+P Ctrl+Comma Ctrl+Q	08.Strings	
	FINIC		09.USB	
	Preferences		10.StarterKit	
Quit	Quit		ArduinoISP	
			LiquidCrystal 🔹	
			RFduinoBLE +	AdvertisementContinuous AdvertisementInterval AdvertisementPeriodic
			RFduinoNonBLE +	
	•		SD 🕨	
		Servo 🕨	ColorWheel	
			SPI 🔸	Connection
			Wire 🕨	LCD
				LedButton
				PowerLevel
	1		RFduin	Proximity
6				Robot
om Arrow.con	n.	Robot2		

RFDIGITAL

www.RFdigital.com • sales@rfdigital.com 1601 Pacific Coast Hwy • Suite 290 Hermosa Beach • CA • 90254 Tel: 949.610.0008 RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RFD22301 Programming Interface 19 19 1 1 RFD22301 **RFD2230**[•] 2 18 2 18 3 17 GPIO1 3 17 GPI01-1332 1332 4 GPIO0 16 4 16 GPIO0 -IC: 6992A 25 IC: 6992A 255 15 5 15 FCC ID: UYI25 FCC ID: UYI25 6 14 RESET 14 RESET 6 7 13 +3V 7 13 +3V· Model: R25 Model: R25 8 12 GND-8 12 GND-11 11 10 10 Antenna Antenna 9 9 Ĭ GND RFduino Copyright© 6 OpenSourceRF.com +3V 🕕 07.12.2013 R401 a RESET **USB** Shield 0 RFD22121 TXD 0 **RFD22121 RFD22121 USB** Programmer **USB** Programmer (Included in dev kits) (Included in dev kits)

For RFduinio items go to: <u>http://RFduino.com</u> Email your application questions to <u>support@rfdigital.com</u>

5

REDIGITAL www.RFdigital.com 1601 Pacific Coast Hwy • Suite 290

Hermosa Beach • CA • 90254 Tel: 949.610.0008 RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RFD22301 Rapid Development & Prototyping Kits

Stackable accessories plug into breadbords

<section-header><complex-block>

Manv different Eval and Dev Kits available on http://www.rfduino.com/

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

FCC Compliance Information

The RFD22301 is IC and FCC Modular Approved and Certified, therefore for use of the RFD22301 module in your product does not require further IC or FCC testing for an intentional radiator for compliance of the RFD22301. Detail instructions and IC and FCC notices shown later in this data sheet. Any modifications made to the RFD22301 will void the IC and FCC Approval and Certification. The RFD22301 has an integrated on-board chip antenna. You simply include the RFD22301 in your product and follow the IC and FCC notices and information below and place the appropriate label on your product to indicate that it includes an IC and FCC approved module and no further testing would be required for the module.

The RFD22302 is NOT IC or FCC Approved since the antenna is not integrated as part of the module. However it is exactly the same as the RFD22301 except it does not have an internal antenna and is built to allow a user to apply their own antenna of choice. Any type of 2.4 GHz antenna may be used. Once you include the RFD22302 into your product and your chosen antenna is connected, then your whole product is tested by an approved IC or FCC compliance laboratory and you receive your own grant for your whole product which includes the RFD22302. This procedure is somewhat costly and time consuming and therefore the RFD22301 is the primary choice by many engineers. The RFD22302 is typically used if you must have an external antenna.

CE, ETSI Compliance Information

The RFD22301, RFD22302, RFD21742 and RFD21743 are CE (ETSI) Tested. See declaration of conformity later in this document.

Using CR2032 Batteries

The CR2032 battery is very commonly used for power. The peak current draw for the Modules are about 15mA, and the background current is 5uA depending on the mode setting of course. Quite often capacitors are used in parallel with the CR2032 to help limit the amount of peak current the CR2032 is exposed to, so as to help it have a longer run time, since the CR2032 does not handle peak current very well over long durations of time. We recommend if you choose to place bypass capacitors tied to the CR2032 for this purpose, then do testing to compare if they really provide you a benefit or not. Quite often the leakage current of the capacitors are so high that they will have negative impact on the battery runtime rather then provide an advantage. At least if you have the room, place the pads, but before you place the caps for production, do testing to make sure they are really helping and not reducing your runtime.

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

Industry Canada Information

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

IC LABEL

Relating to Model Number R25 (RFD Part Number: RFD22301)

The unit should have a permanently attached label in a conspicuous location with the following statement:

Contains IC: 6992A-25

NOTES:

1. Industry Canada does not specify the size of the label or the lettering thereon. The only requirement is that the text be legible.

BLE

SAMPLE FCC STATEMENT TO BE INCLUDED IN USER'S MANUAL

Relating to Model Number R25 (RFD Part Number: RFD22301)

INSTRUCTION TO THE USER (if device DOES NOT contain a digital device)

The user is cautioned that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

INSTRUCTION TO THE USER (if device contains a digital device)

This equipment has been tested and found to comply with the limits for a class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- * Reorient or relocate the receiving antenna.
- * Increase the separation between the equipment and receiver.

* Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

* Consult the dealer or an experienced radio/TV technician for help.

In order to maintain compliance with FCC regulations, shielded cables must be used with this equipment. Operation with non-approved equipment or unshielded cables is likely to result in interference to radio and TV reception. The user is cautioned that changes and modifications made to the equipment without the approval of manufacturer could void the user's authority to operate this equipment.

BLE

FCC LABEL

Relating to Model Number R25 (RFD Part Number: RFD22301)

The unit should have a permanently attached label in a conspicuous location with the following statement:

Contains FCC ID: UYI25

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference and

(2) this device must accept any interference received, including interference that may cause undesired operation.

NOTES:

1. The FCC does not specify the size of the label or the lettering thereon. The only requirement is that the text be legible.

2. If the entire label can not be placed on the unit due to space constraint, only FCC ID may be displayed on the unit. In such cases, the compliance statement will have to be included in the "user's manual". NOTE: Device must be smaller than a man's palm.

** If the unit also interfaces with phone line, it requires additional information on the label - refer to part 68 information **

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RoHS Declaration Of Conformity November 17, 2013

RF Digital declares that part numbers

• RFD22301 • RFD22302

are manufactured with RoHS materials.

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

DECLARATION OF CONFORMITY

November 17, 2013

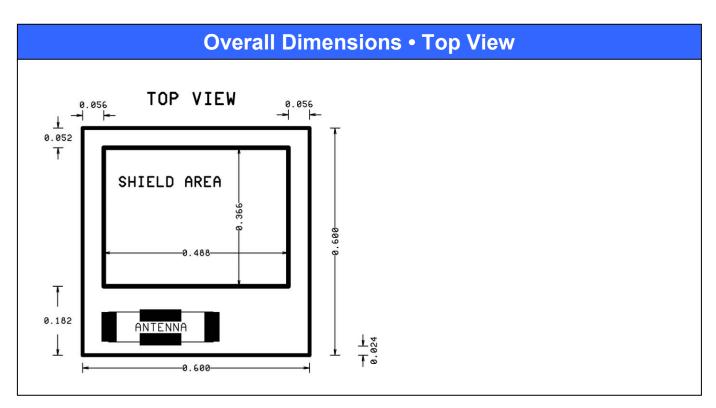
RF Digital declares that part numbers

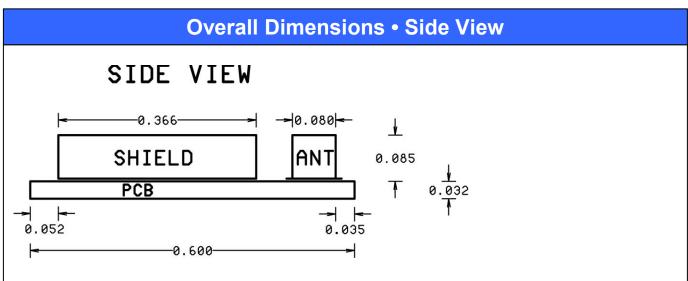
• RFD22301 • RFD22302

comply with ETSI EN 300 440-2 power requirements

as called out in the R&TTE V1.2.1 Directive

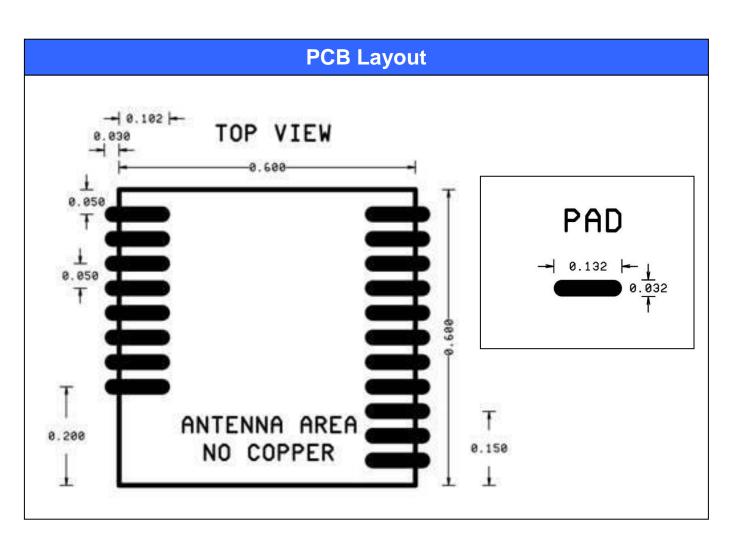
Technical documents for the above mentioned part numbers are held at


RF Digital Corporation


1601 Pacific Coast Highway, Suite 290 Hermosa Beach, CA 90254

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

Downloaded from Arrow.com.



Hermosa Beach • CA • 90254

Tel: 949.610.0008

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

Washing

The RFD22301 and RFD22302 are NOT washable.

Use no-clean flux, leaded or lead-free. If you attempt to wash the modules, water will enter beneath (inside) the RF shield and get trapped, which may cause device failure or damage once powered on. There is no way to make sure all water has been removed before powering the module so do NOT wash the modules.

Potting, Encapsulation and Conformal Coating

Do NOT pot or conformal coat the RFD22301 or RFD22302.

If you plan on encapsulating the RFD22301 or RFD22302 in a potting compound or conformal coating, you must assure that the compound in liquid or solid form does not enter under the shield where there are sensitive RF components. Some of the capacitive values are as low as half a picofarad and sensitive to contacting materials such as potting compounds. There are potting compounds and conformal coatings which have very good dielectric constants and are suitable for 2.4 GHz potting applications, however, when you apply any of these, they were accounted for in the circuit design and might reduce performance of the device or all together cause it not to function.

Applying any compound, conformal coating or potting directly to the module voids any and all warranty and support service.

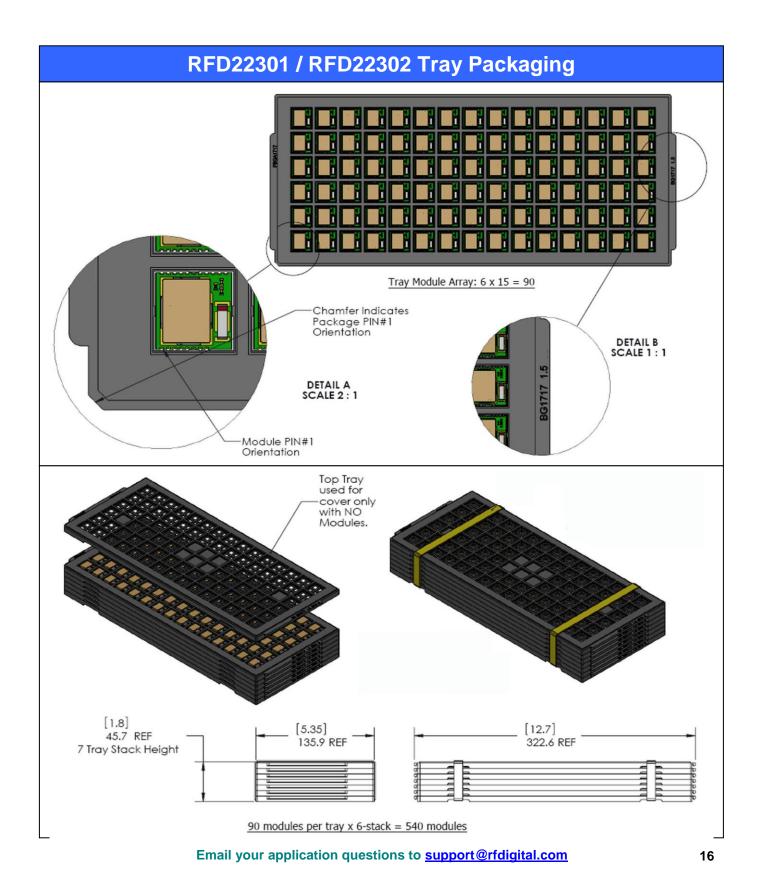
If your application requires 100% sealing of the module, there is a way to do this very successfully without impacting the module performance. Simply place the module on your PCB. Place a plastic cover over the module (like a hat), make the cover large enough to cover the whole module. Apply glue around the bottom perimeter of the cover where it sits on the PCB. This allows the module to function in free airspace while there is a complete seal around it. This information is only for reference and you should do your own testing with your application to find the best suitable fit for your own design.

Reflow Profile

Use standard lead-free or leaded reflow profile for the RFD22301 and RFD22302. Your CM (Contract Manufacturer) should profile this module along with your PCB and all other parts on it through their reflow oven to properly set a profile suitable for all the parts on the board combined.

USE CAUTION: If you are building a double-sided placement board, place this device last so it will not be subjected to being reflowed upside-down.

As with building any RF devices, you should always build a small quantity through your production process, test and verify, then increase your quantities to make sure the process is not harmful to the performance of your RF system. This is true with any RF system, including use of these modules.



Hermosa Beach • CA • 90254

Tel: 949.610.0008

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

Downloaded from Arrow.com.

ww.RFdigital.com 1601 Pacific Coast Hwy • Suite 290 Hermosa Beach • CA • 90254 Tel: 949.610.0008 RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

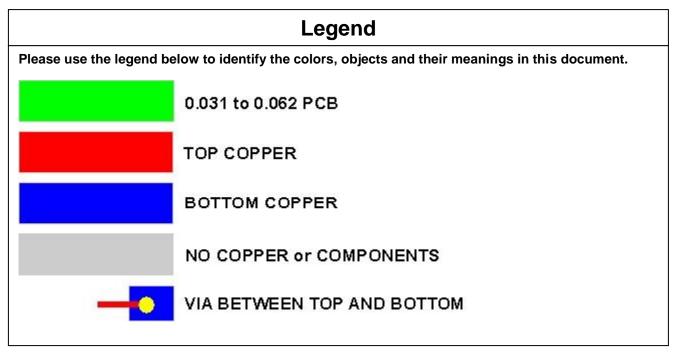
RFD22301 / RFD21735 Tray Packaging 322.6 REF -- 315 -8x No Holes(Vacuum Pickup Cell) 135.9 92.1 12.7 ٦٢ -Chamfer Indicates Package PIN #1 Orientation 2.54 र्पा 34.3 25.4 255.3 19.5 DETAIL A SCALE 1:1 19.5

Tel: 949.610.0008

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302


BLE


Surface Mounted RF Module Layout Examples

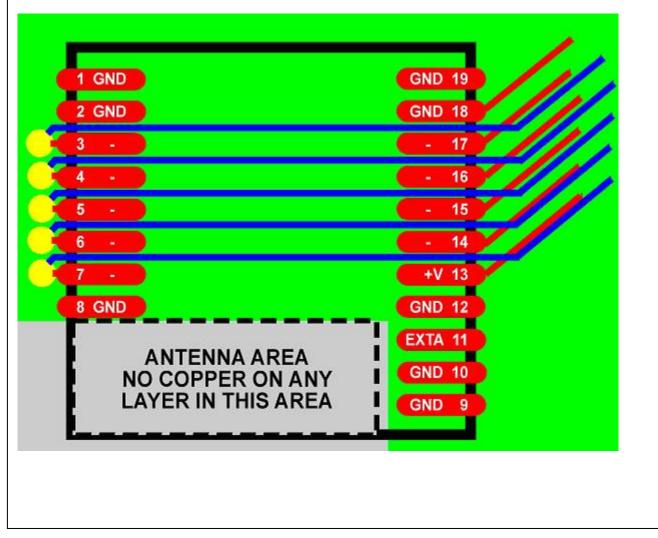
For Part Numbers RFD22301 and RFD22302

Layout Trace Routing and VIAs

When doing your layout for the RFD21733 and RFD21735 avoid placing routs under the module if at all possible. Having traces under the module as long as they are fully covered by soldermask is typically fine, however placing VIAs under the module is not at all recommended since soldermask covering VIAs are typically not fully plugged and protected. Therefore, if there is any exposes soldermask under the module near an area were your board has an exposed via, there is a chance of a short. There is a slim chance of this ever happening, however if possible, make effort to avoid having VIAs under the Modules.

Email your application questions to support@rfdigital.com

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302


BLE

RFD22301 Layout Example Pinout

This Layout Examples document only references pins that are common to all RFD22301 and RFD22302 modules and matter to the layout, which are ground and external antenna connections where applicable. To keep the file size of this document small, some of the larger images are outputted in lower resolutions, for full details on pinouts refer to the data sheet for the appropriate part number, which can all be found at http://www.rfdigital.com.

Pins labels 3,4,5,6,7,14,15,16,17 change based on which part number module is being used, however that does not matter for this document.

If you have any questions, feel free to contact RF Digital Support anytime, we're always here to help you!

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

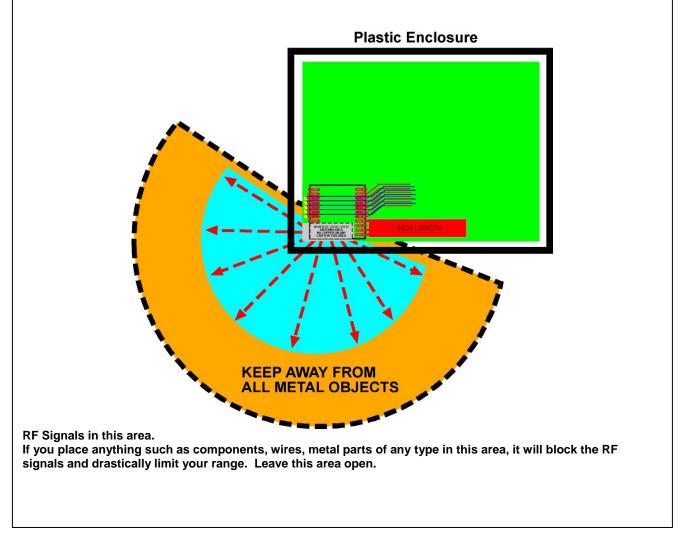
RFD22301 Layout Examples

The following layout examples are for the RFD22301 module which has a built-in chip antenna. Later in this document there are examples for the RFD22302 module which is for use with external an antenna.

RFD22301 Antenna Pattern

This is a typical antenna pattern, however does vary based on many factors including surrounding components and ground planes. It is only provided as a reference. The one inch copper plane shown helps maintain the balanced antenna pattern and when possible should be used, if not possible, its not required.

Antenna Pattern

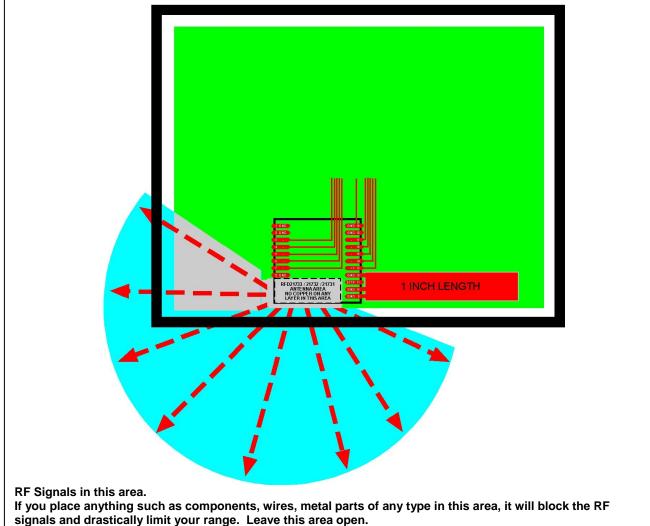


RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RFD22301 Keep Out Area - Example 1

When placing the module info a plastic enclosure, it is highly recommended that you locate the module in the corner of the enclosure / PCB so it will be as far away from your other components on the PCB and as close to free airspace as possible. In addition, you want to locate the module in a position in your product where it will have as much free airspace as possible near the antenna when in use. For example if it will be placed against a wall, it is preferred to locate the module so it will be in a location in your product where it will be on the side of the product where it will be further away from the wall, rather then directly next to it, so the RF signal can have as much free airspace to give you the best range performance possible. (Note: If you plan on using a metal enclosure, you can not locate the module inside of the enclosure or it will have very limited range.)



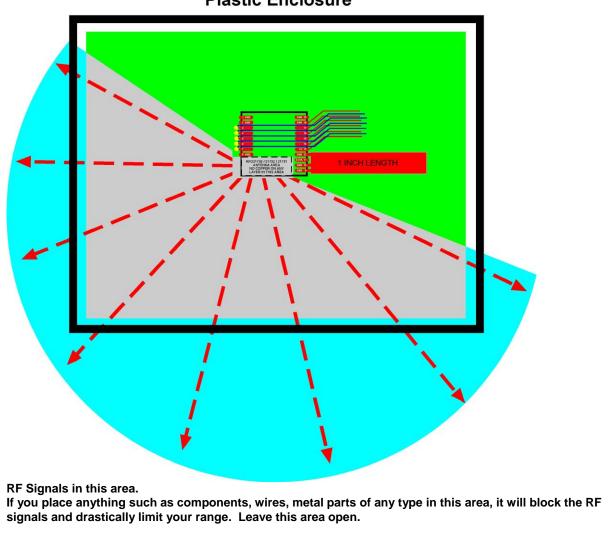
RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RFD22301 - Layout Examples 2

The gray area shows where to keep free from copper and components. The one-inch length copper area is optional, however does improve the range if you can add it. Parts can be placed all over the rest of the board, however if possible keep about a half-inch distance from the one inch length ground area to the right of the module, again, only if possible. Also the signal connections to the module can be made on either layer. The electrical ground connection to the module is to be made with a thin trace so the one inch ground plane off to the side can be effective.

Plastic Enclosure

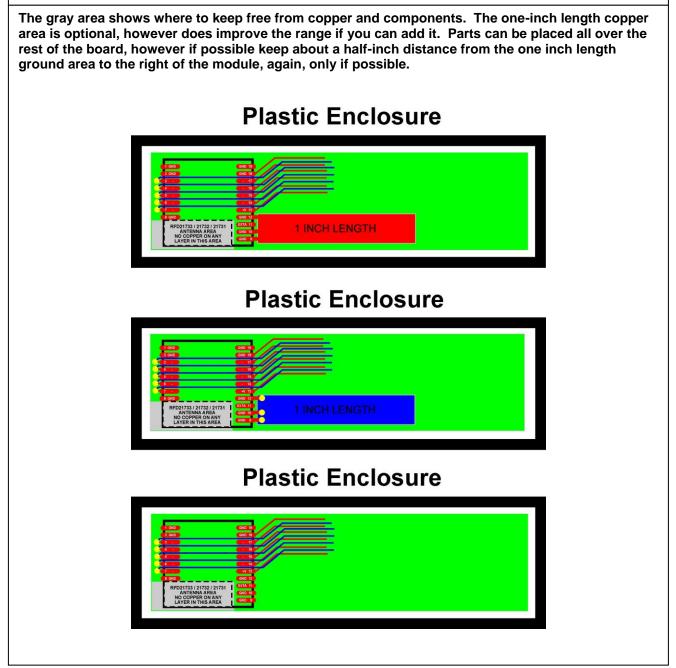

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RFD22301 - Layout Examples 3

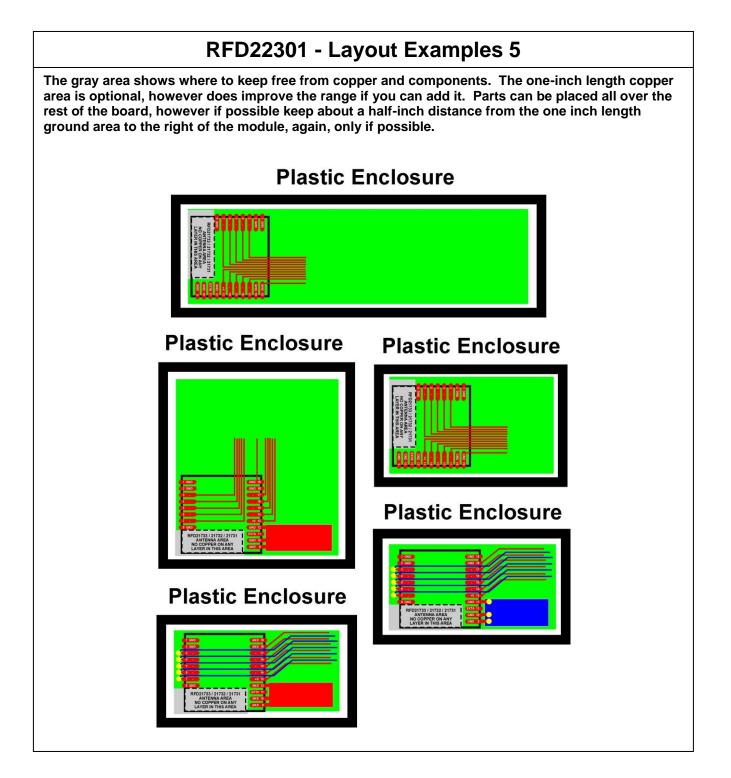
The gray area shows where to keep free from copper and components. The one-inch length copper area is optional, however does improve the range if you can add it. Parts can be placed all over the rest of the board, however if possible keep about a half-inch distance from the one inch length ground area to the right of the module, again, only if possible.

Plastic Enclosure



RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE


RFD22301 - Layout Examples 4

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

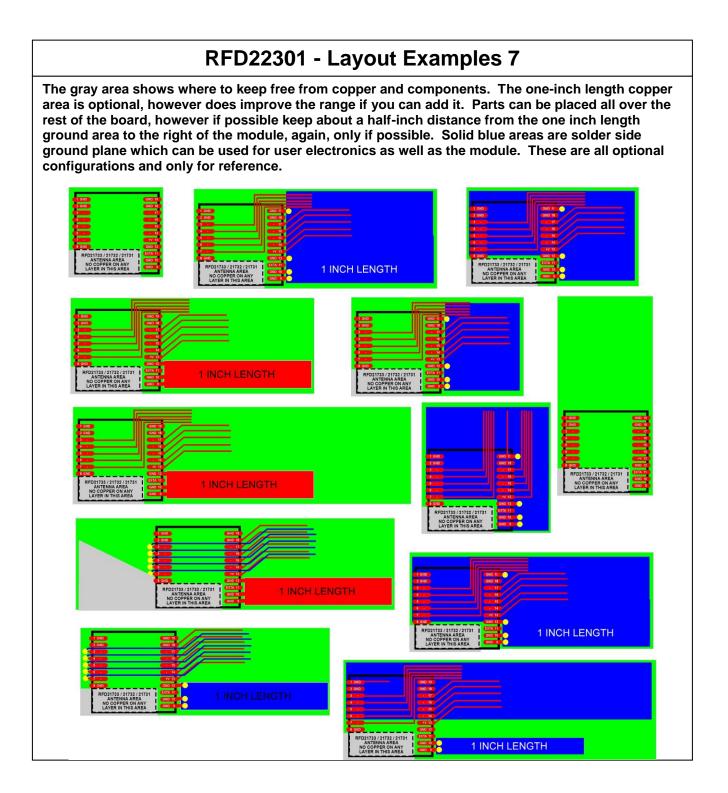
BLE



RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

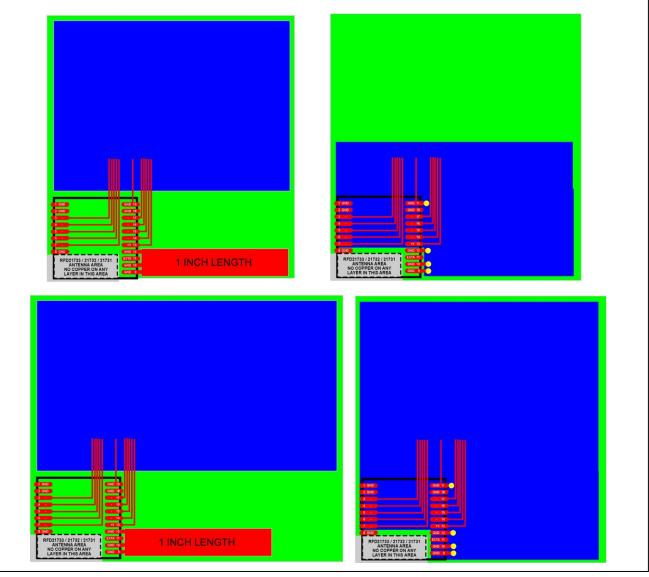
RFD22301 - Layout Examples 6


The gray area shows where to keep free from copper and components. The one-inch length copper area is optional, however does improve the range if you can add it. Parts can be placed all over the rest of the board, however if possible keep about a half-inch distance from the one inch length ground area to the right of the module, again, only if possible.

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

Email your application questions to support@rfdigital.com

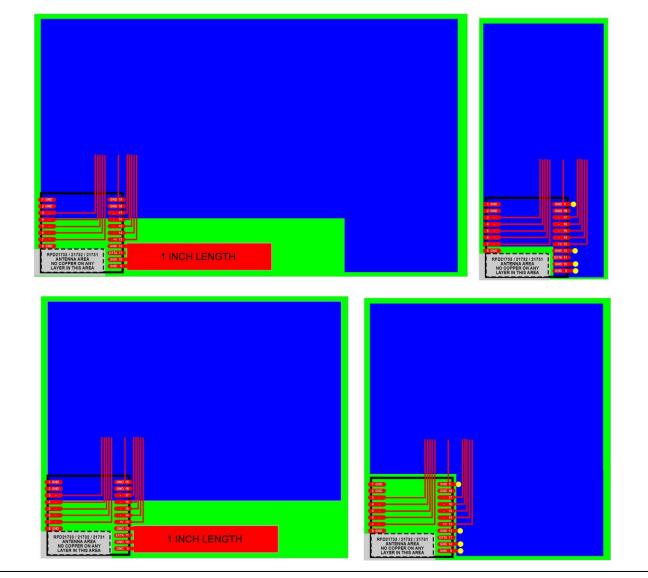


RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RFD22301 - Layout Examples 8

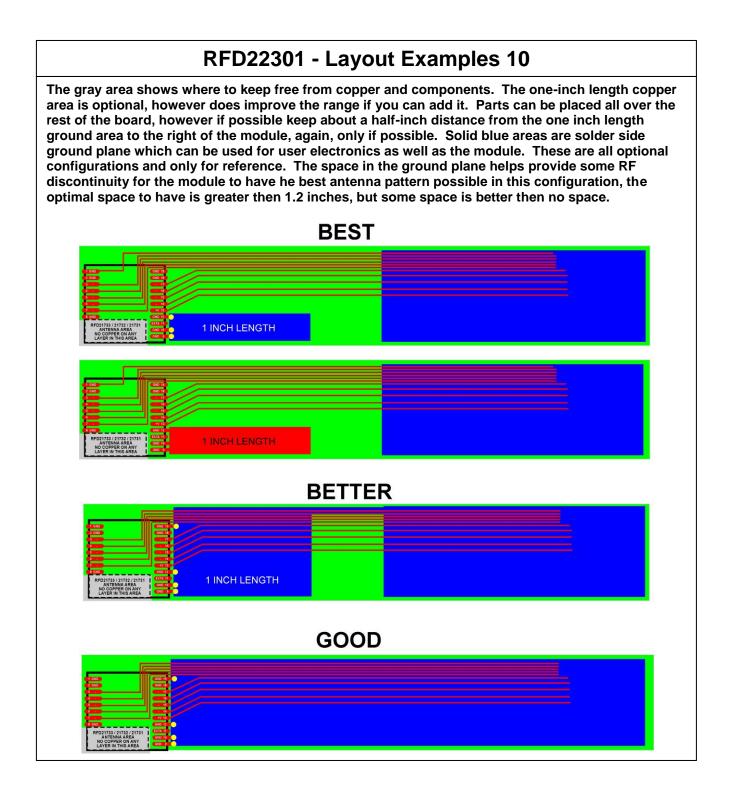
The gray area shows where to keep free from copper and components. The one-inch length copper area is optional, however does improve the range if you can add it. Parts can be placed all over the rest of the board, however if possible keep about a half-inch distance from the one inch length ground area to the right of the module, again, only if possible. Solid blue areas are solder side ground plane which can be used for user electronics as well as the module. These are all optional configurations and only for reference. The two left examples are preferred, but the two right ones will work as well, but will not have as good of an antenna pattern.



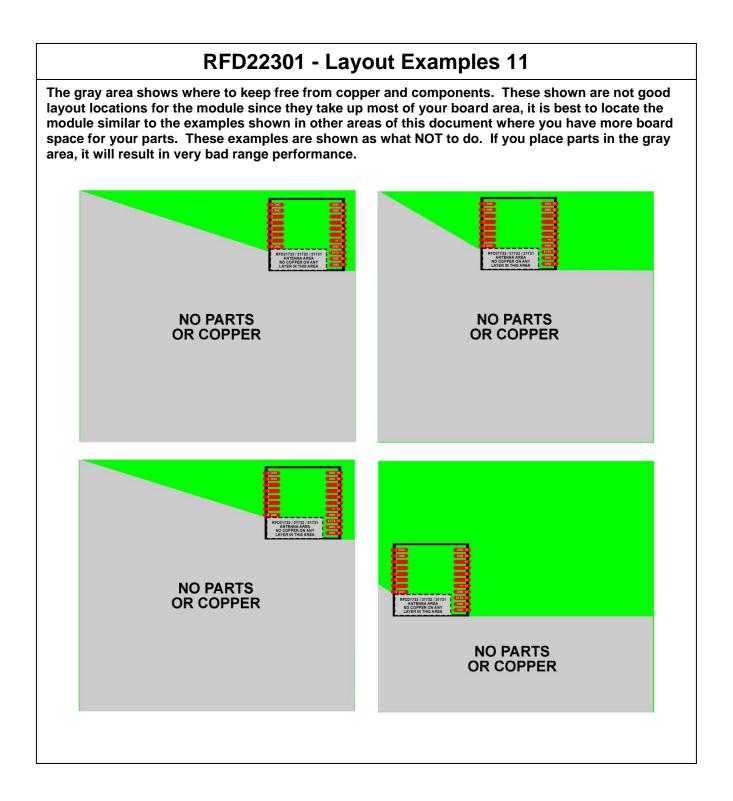
RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RFD22301 - Layout Examples 9


The gray area shows where to keep free from copper and components. The one-inch length copper area is optional, however does improve the range if you can add it. Parts can be placed all over the rest of the board, however if possible keep about a half-inch distance from the one inch length ground area to the right of the module, again, only if possible. Solid blue areas are solder side ground plane which can be used for user electronics as well as the module. These are all optional configurations and only for reference. The two left examples are preferred, but the two right ones will work as well, but will not have as good of an antenna pattern.

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

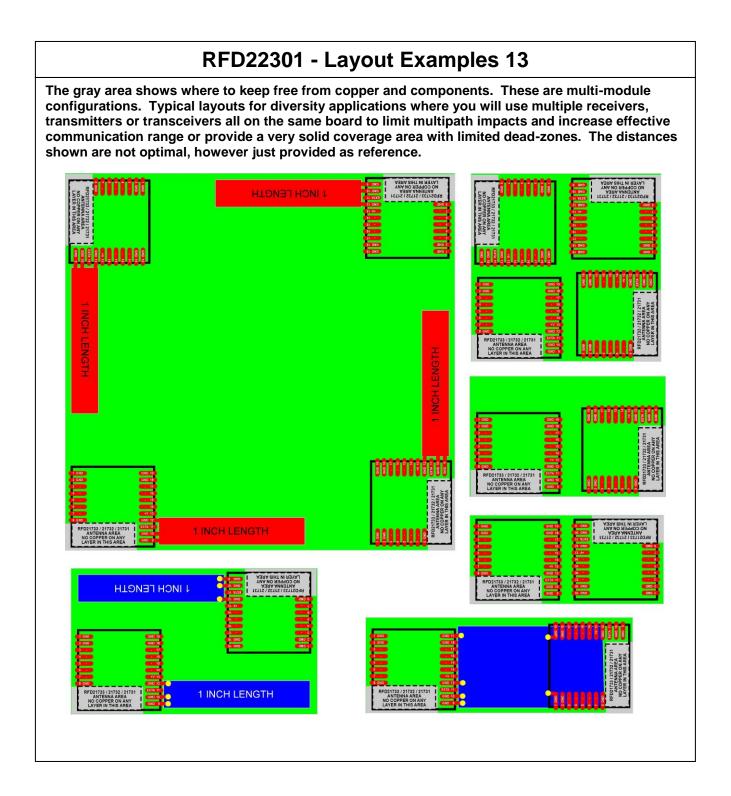

BLE

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

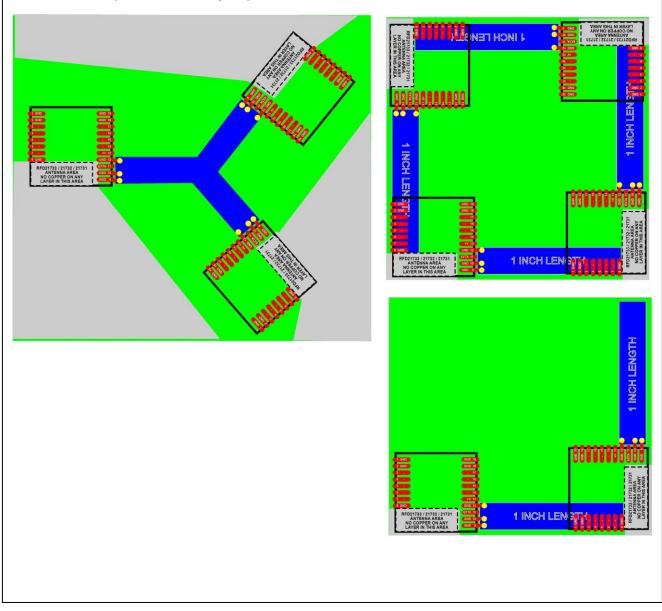
BLE


RFD22301 - Layout Examples 12 The gray area shows where to keep free from copper and components. These shown are not good layout locations for the module since they take up most of your board area, it is best to locate the module similar to the examples shown in other areas of this document where you have more board space for your parts. These examples are shown as what NOT to do. If you place parts in the gray area, it will result in very bad range performance. /21732/217 NNA AREA PER ON ANY **NO PARTS** OR COPPER **NO PARTS OR COPPER NO PARTS OR COPPER NO PARTS OR COPPER** 41 GMS 41

Email your application questions to support@rfdigital.com

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE



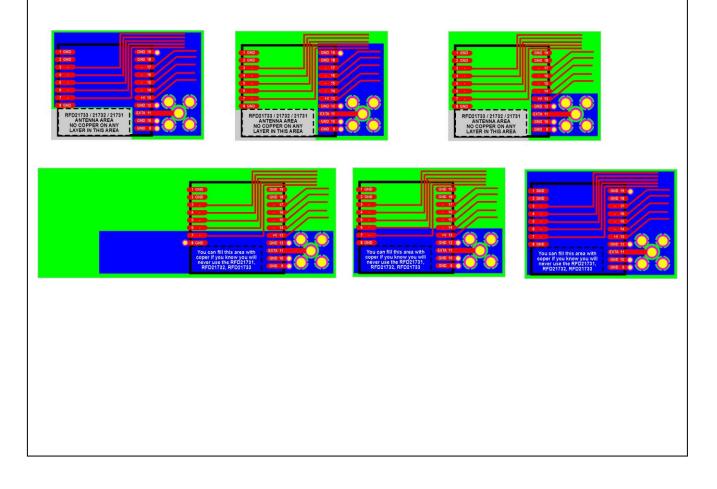
RF Module Model Number: R25 PN: RFD22301 PN: RFD22302

BLE

RFD22301- Layout Examples 14

The gray area shows where to keep free from copper and components. These are multi-module configurations. Typical layouts for diversity applications where you will use multiple receivers, transmitters or transceivers all on the same board to limit multipath impacts and increase effective communication range or provide a very solid coverage area with limited dead-zones. The distances shown are not optimal, however just provided as reference.

RF Module Model Number: R25 PN: RFD22301 PN: RFD22302


BLE

RFD22302 - Layout Examples 15

The gray area shows where to keep free from copper and components. The RFD22302 requires the use of an external antenna and therefore the most common connector used for this is an SMA and the examples below show a typical SMA connector footprint interface.

PCB thickness is 0.031 inch to 0.062 inch, double sided. The blue color shows ground plane under the module on the solder side of the board.

If you place ground plane or any traces under the gray area marked no-copper, then you will not have the option to use the RFD22301 which is the on-board chip antenna version of the RFD22302. So it is your choice if you choose to flood copper under that area or not. There is no benefit to flood copper in that area. If you choose to make a dual-mode layout to handle both module options, with chip antenna or without (which is what we recommend), then also advise with the layout configurations above for proper application.

BLE

Important Notice

RF Digital reserves the right to make corrections, modifications, and/or improvements to the product and/or its specifications at any time without notice.

RF Digital assumes no liability for the user's product and/or applications.

RF Digital products are not authorized for use in safety-critical applications, including but not limited to life-support applications.

RF Digital assumes no liability for parts or their application beyond replacement or refunding the original purchase price.

All trademarks and trade names belong to their respective owners.

Information provided in this document is for reference only. The user must conduct testing and prototyping on their own for their own application. This document only provides an example of a possible use for the parts shown in this design and requires actual testing to confirm its accuracy or validity or proper application. There is NO suggestion that the devices shown in this document should be used for the implied application. There is no guarantee or warranty of suitability for any specific application. The information disclosed in this document is AS-IS. By using any information contained in this document you are assuming all risks and liability associated therewith. RF Digital reserves the right to make corrections, modifications, changes and/or improvements to specifications or details at any time without notice or obligation. RF Digital assumes no liability for the user's product and/or applications. RF Digital products are not authorized for use in safety-critical applications, including but not limited to life-support applications. RF Digital assumes no liability for parts or their application beyond replacement or refunding the original purchase price paid to RF Digital.

Limited Product Warranty

RF Digital warrants that RF Devices manufactured by RF Digital are free from defects in material and workmanship, for Ninety (90) Days from date of delivery. RF Devices covered by this warranty and returned to RF Digital within the Ninety Day Warranty Period will be eligible for replacement, repair, or credit, limited to the amount RF Digital was paid for the RF Device. To obtain a remedy under this Warranty, the following conditions must be met: (1) Customer must notify RF Digital in writing promptly on discovery of the deficiency with reasonable detail within the Warranty Period; (2) Customer must return the RF Devices to RF Digital promptly upon receipt of an RMA from RF Digital, at Customer's risk and expense; and (3) RF Digital confirms the claimed deficiency is present. If all of these conditions are met, RF Digital, at its sole option, will either replace or repair the RF Device or credit Customer's account for the amount the Customer paid to RF Digital for the RF Device.

End of document.