Pin Descriptions

Pin Name	Туре	Pin No	Description
SRC & SRC#	Input	2, 3	0.7V Differential SRC input from PI6C410 clock synthesizer
OE_0 & OE_3	Input	8, 21	3.3V LVTTL input for enabling outputs, active high. OE_0 for OUT0 / OUT0# OE_3 for OUT3 / OUT3#
OE_INV	Input	25	3.3V LVTTL input for inverting the OE, SRC_STOP# and PWRDWN# pins. When 0 = same stage When 1 = OE_0, OE_3, SRC_STOP#, PWRDWN# inverted.
OUT[0:3] & OUT[0:3]#	Output	6, 7, 9, 10, 19, 20, 22, 23	0.7V Differential outputs
PLL/BYPASS#	Input	12	3.3V LVTTL input for selecting fan-out of PLL operation.
SCLK	Input	13	SMBus compatible SCLOCK input
SDA	I/O	14	SMBus compatible SDATA
IREF	Input	26	External resistor connection to set the differential output current
SRC_STOP#	Input	16	3.3V LVTTL input for SRC stop, active low
PLL_BW#	Input	17	3.3V LVTTL input for selecting the PLL bandwidth
PWRDWN#	Input	15	3.3V LVTTL input for Power Down operation, active low
V _{DD}	Power	1, 5, 11, 18, 24	3.3V Power Supply for Outputs
VSS	Ground	4	Ground for Outputs
VSS_A	Ground	27	Ground for PLL
VDD_A	Power	28	3.3V Power Supply for PLL

Serial Data Interface (SMBus)

This part is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

Address assignment

A6	A5	A4	A3	A2	A1	A0	W/R
1	1	0	1	1	1	0	0/1

Data Protocol

1 bit	7 bits	1	1	8 bits	1	8 bits	1	8 bits	1	8 bits	1	1 bit
Start bit	Slave Addr	R/W	Ack	Register offset	Ack	Byte Count = N	Ack	Data Byte 0	Ack	 Data Byte N - 1	Ack	Stop bit

Notes:

1. Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.

Data Byte 0: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0	Outputs Mode 0 = Divide by 2 1 = Normal	RW	1 = Normal	OUT[0:3], OUT[0:3]#	NA
1	PLL/BYPASS# 0 = Fanout 1 = PLL	RW	1 = PLL	OUT[0:3], OUT[0:3]#	NA
2	PLL Bandwidth 0 = High Bandwidth, 1 = Low Bandwidth	RW	1 = Low	OUT[0:3], OUT[0:3]#	NA
3	TBD				NA
4	TBD				NA
5	TBD				NA
6	SRC_STOP# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	
7	PWRDWN# 0 = Driven when stopped 1 = Tristate	RW	0 = Driven when stopped	OUT[0:3], OUT[0:3]#	NA

Data Byte 1: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0					
1	OUTPUTS enable	RW	1 = Enabled	OUT0, OUT0#	NA
2	1 = Enabled $0 = Disabled$	RW	1 = Enabled	OUT1, OUT1#	NA
3					
4					
5	OUTPUTS enable	RW	1 = Enabled	OUT2, OUT2#	NA
6	1 = Enabled 0 = Disabled	RW	1 = Enabled	OUT3, OUT3#	NA
7					

Data Byte 2: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0					
1	Allow control of OUTPUTS with	RW	0 = Free running	OUT0, OUT0#	NA
2	assertion of SRC_STOP# 0 = Free running 1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT1, OUT1#	NA
3					
4					
5	Allow control of OUTPUTS with	RW	0 = Free running	OUT2, OUT2#	NA
6	assertion of SRC_STOP# 0 = Free running 1 = Stopped with SRC_Stop#	RW	0 = Free running	OUT3, OUT3#	NA
7					

Data Byte 3: Control Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Source Pin
0		RW			
1		RW			
2		RW			
3	TDD	RW			
4	עםו	RW			
5		RW			
6		RW			
7		RW			

Data Byte 4: Pericom ID Register

Bit	Descriptions	Туре	Power Up Condition	Output(s) Affected	Pin
0		R	0	NA	NA
1		R	0	NA	NA
2		R	0	NA	NA
3	Dericerry ID	R	0	NA	NA
4	Pericom ID	R	0	NA	NA
5		R	1	NA	NA
6		R	0	NA	NA
7		R	0	NA	NA

Functionality

PWRDWN#	OUT	OUT#	SRC_Stop#	OUT	OUT#
1	Normal	Normal	1	Normal	Normal
0	$I_{REF} \times 2$ or Float	Low	0	$I_{REF} \times 6$ or Float	Low

Power Down (PWRDWN# assertion)

Figure 1. Power down sequence

Power Down (PWRDWN# De-assertion)

Figure 2. Power down de-assert sequence

5

Current-mode output buffer characteristics of OUT[0:3], OUT[0:3]#

Differential Clock Buffer characteristics

Symbol	Minimum	Maximum
R _O	3000Ω	N/A
R _{OS}	unspecified	unspecified
V _{OUT}	N/A	850mV

Current Accuracy

Symbol	Conditions	Configuration	Load	Min.	Max.
I _{OUT}	$V_{DD} = 3.30 \pm 5\%$	$R_{REF} = 475\Omega \ 1\%$ $I_{REF} = 2.32mA$	Nominal test load for given configuration	-12% I _{NOMINAL}	+12% I _{NOMINAL}

Note:

1. $I_{NOMINAL}$ refers to the expected current based on the configuration of the device.

Differential Clock Output Current

Board Target Trace/Term Z	Reference R, Iref = V _{DD} /(3xRr)	Output Current	V _{OH} @ Z
100Ω (100 Ω differential $\approx 15\%$ coupling ratio)	$R_{REF} = 475\Omega \ 1\%,$ $I_{REF} = 2.32mA$	$I_{OH} = 6 \ge I_{REF}$	0.7V @ 50

Symbol	Parameters	Min.	Max.	Units
V _{DD_A}	3.3V Core Supply Voltage	-0.5	4.6	
V _{DD}	3.3V I/O Supply Voltage	-0.5	4.6	V
V _{IH}	Input High Voltage		4.6	V
V _{IL}	Input Low Voltage	-0.5		
Ts	Storage Temperature	-65	150	°C
V _{ESD}	ESD Protection	2000		V

Absolute Maximum Ratings (Over operating free-air temperature range)

Note:

1. Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Symbol	Parameters	Condition	Min.	Max.	Units
V _{DD_A}	3.3V Core Supply Voltage		3.135	3.465]
V _{DD}	3.3V I/O Supply Voltage		3.135	3.465	
V _{IH}	3.3V Input High Voltage	V _{DD}	2.0	$V_{DD} + 0.3$] `
V _{IL}	3.3V Input Low Voltage		$V_{\rm SS} - 0.3$	0.8]
I _{IK}	Input Leakage Current	$0 < V_{IN} < V_{DD}$	-5	+5	μΑ
V _{OH}	3.3V Output High Voltage	$I_{OH} = -1 mA$	2.4		V
V _{OL}	3.3V Output Low Voltage	$I_{OL} = 1mA$		0.4	1
I _{OH}	Output High Current	$I_{OH} = 6 \times I_{REF},$ $I_{REF} = 2.32mA$	12.2		mA
				15.6	
C _{IN}	Input Pin Capacitance		3	5	"E
C _{OUT}	Output Pin Capacitance			6	рг
L _{PIN}	Pin Inductance			7	nH
I _{DD}	Power Supply Current	$V_{DD} = 3.465V, F_{CPU} = 200MHz$		200	
I _{SS}	Power Down Current	Driven outputs		40	mA
I _{SS}	Power Down Current	Tristate outputs		12]
T _A	Ambient Temperature		0	70	°C

7

DC Electrical Characteristics (V_{DD} = 3.3±5%, V_{DD A} = 3.3±5%)

Symbol	Parameters	Min	Max.	Units	Notes
T _{rise} / T _{fall}	Rise and Fall Time (measured between 0.175V to 0.525V)	175	700	ps	2
$\Delta T_{rise} / \Delta T_{fall}$	Rise and Fall Time Variation		125	ps	2
	Rise/Fall Matching		20	%	2
T _{pd}	PLL Mode		±250	ps	
	Non-PLL Mode	2.5	6.5	ns	
T _{skew}	Output-to-Output Skew		50	ps	3
T _{jitter}	Cycle – Cycle Jitter		50	ps	3, 4
V _{HIGH}	Voltage High including overshoot	660	1150	mV	2
V _{LOW}	Voltage Low including undershoot	-300		mV	2
V _{cross}	Absolute crossing point voltages	250	550	mV	2
ΔV_{cross}	Total Variation of Vcross over all edges		140	mV	2
T _{DC}	Duty Cycle	45	55	%	3

AC Switching Characteristics (V_{DD} = 3.3±5%, V_{DD_A} = 3.3±5%)

Notes:

1. Test configuration is $R_s = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.

2. Measurement taken from Single Ended waveform.

3. Measurement taken from Differential waveform.

4. Measurement taken using M1 data capture analysis tool.

Configuration Test Load Board Termination

8

PERICOM[®]

PERICOM[®]

Ordering Information⁽¹⁻³⁾

Ordering Code	Package Code	Package Description
PI6C20400HE	HE	28-pin, 209-mil wide, SSOP, Pb-Free and Green
PI6C20400LE	LE	28-pin, 173-mil wide, TSSOP, Pb-Free and Green

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com