

ON Semiconductor®

2N5088 2N5089

MMBT5088 MMBT5089

NPN General Purpose Amplifier

This device is designed for low noise, high gain, general purpose amplifier applications at collector currents from $1\mu A$ to 50 mA.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter		Value	Units
V_{CEO}	Collector-Emitter Voltage	2N5088 2N5089	30 25	V
V _{CBO}	Collector-Base Voltage	2N5089 2N5088	35	V
V _{EBO}	Emitter-Base Voltage	2N5089	30 4.5	V
I _C	Collector Current - Continuous		100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range		-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units	
		2N5088 2N5089	*MMBT5088 *MMBT5089		
P _D	Total Device Dissipation	625	350	mW	
	Derate above 25°C	5.0	2.8	mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W	

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

(continued)

Electrical Characteristics

TA = 25°C unless otherwise noted

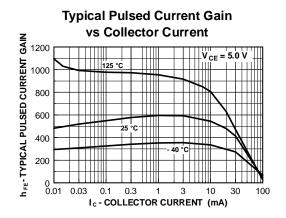
Symbol	Parameter	Test Conditions		Min	Max	Units	
OFF CHAF	RACTERISTICS						
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	Ic = 1.0 mA, I _B = 0	5088 5089	30 25		V	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \ \mu\text{A}, \ I_E = 0$	5088 5089	35 30		V V	
I _{CBO}	Collector Cutoff Current	V _{CB} = 20 V, I _E = 0 V _{CB} = 15 V, I _E = 0	5088 5089		50 50	nA nA	
I _{EBO}	Emitter Cutoff Current	V _{EB} = 3.0 V, I _C = 0 V _{EB} = 4.5 V, I _C = 0			50 100	nA nA	
ON OUADA OTEDIOTICO							

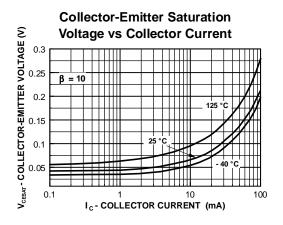
ON CHARACTERISTICS

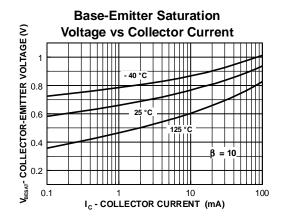
h _{FE}	DC Current Gain	$I_C = 100 \mu A, V_{CE} = 5.0 \text{ V}$ $I_C = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}^*$	5088 5089 5088 5089 5088 5089	300 400 350 450 300 400	900 1200	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$			0.5	V
V _{BE(on)}	Base-Emitter On Voltage	$I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$			0.8	V

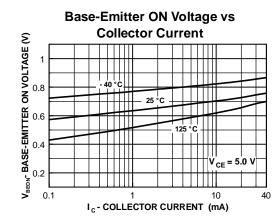
SMALL SIGNAL CHARACTERISTICS

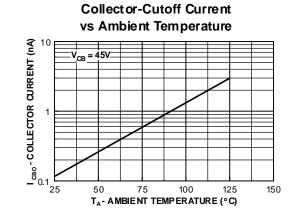
f _T	Current Gain - Bandwidth Product	$I_C = 500 \mu\text{A}, V_{CE} = 5.0 \text{mA},$ $f = 20 \text{MHz}$	50		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 100 \text{ kHz}$		4.0	pF
C _{eb}	Emitter-Base Capacitance	$V_{BE} = 0.5 \text{ V}, I_{C} = 0, f = 100 \text{ kHz}$		10	pF
h _{fe}	Small-Signal Current Gain	I _C = 1.0 mA, V _{CE} = 5.0 V, 5088 f = 1.0 kHz 5089	350 450	1400 1800	
NF	Noise Figure	$I_C = 100 \ \mu A, \ V_{CE} = 5.0 \ V, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		3.0 2.0	dB dB

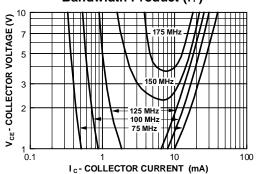

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%


Spice Model

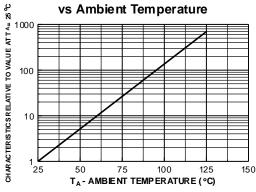

 $NPN \ (Is=5.911f \ Xti=3 \ Eg=1.11 \ Vaf=62.37 \ Bf=1.122K \ Ne=1.394 \ Is=5.911f \ Ikf=14.92m \ Xtb=1.5 \ Br=1.271 \ Nc=2 \ Isc=0 \ Ikr=0 \ Rc=1.61 \ Cjc=4.017p \ Mjc=.3174 \ Vjc=.75 \ Fc=.5 \ Cje=4.973p \ Mje=.4146 \ Vje=.75 \ Tr=4.673n \ Tf=821.7p \ Itf=.35 \ Vtf=4 \ Xtf=7 \ Rb=10)$

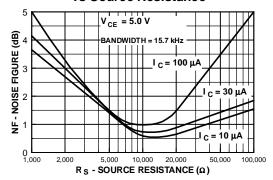

(continued)

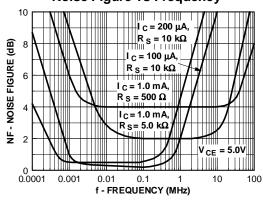

Typical Characteristics

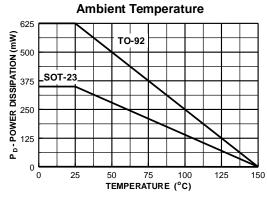

(continued)

Typical Characteristics (continued)

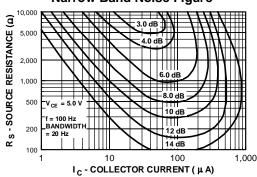

Input and Output Capacitance vs Reverse Bias Voltage

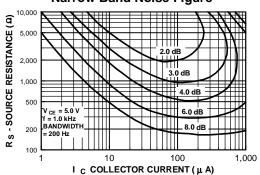

Contours of Constant Gain Bandwidth Product (f_T)


Normalized Collector-Cutoff Current vs Ambient Temperature

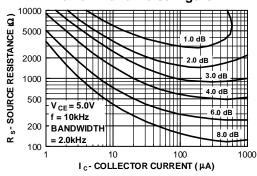

Wideband Noise Frequency vs Source Resistance

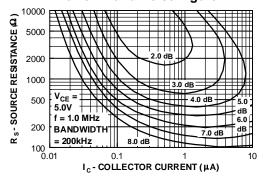
Noise Figure vs Frequency


Power Dissipation vs

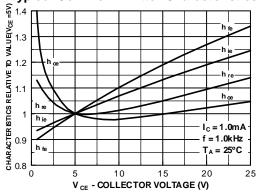

(continued)

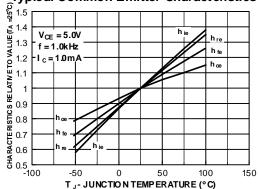
Typical Characteristics (continued)


Contours of Constant Narrow Band Noise Figure

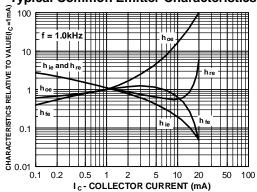

Contours of Constant Narrow Band Noise Figure

Contours of Constant Narrow Band Noise Figure


Contours of Constant Narrow Band Noise Figure


(continued)

Typical Common Emitter Characteristics (f = 1.0 kHz)


Typical Common Emitter Characteristics

Typical Common Emitter Characteristics

Typical Common Emitter Characteristics

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

Phone: 81-3-5817-1050

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

♦ © Semiconductor Components Industries, LLC

www.onsemi.com