MM74HC244 Octal 3-STATE Buffer

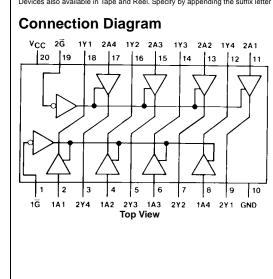
FAIRCHILD SEMICONDUCTOR®

MM74HC244 Octal 3-STATE Buffer

General Description

The MM74HC244 is a non-inverting buffer and has two active low enables (1G and 2G); each enable independently controls 4 buffers. This device does not have Schmitt trigger inputs.

These 3-STATE buffers utilize advanced silicon-gate CMOS technology and are general purpose high speed non-inverting buffers. They possess high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits achieve speeds comparable to low power Schottky devices, while retaining the advantage of CMOS circuitry, i.e., high noise immunity, and low power consumption. All three devices have a fanout of 15 LS-TTL equivalent inputs.

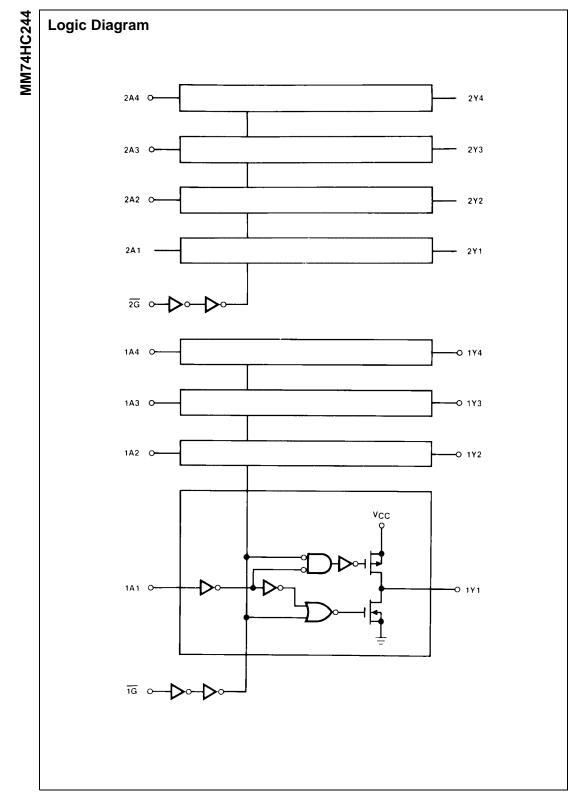

All inputs are protected from damage due to static discharge by diodes to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 14 ns
- 3-STATE outputs for connection to system buses
- Wide power supply range: 2–6V
 Low quiescent supply current: 80 μA
- Contraction of the second supply current
 Output current: 6 mA

Ordering Code:

Order Number	Package Number	Package Description			
MM74HC244WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide			
MM74HC244SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
MM74HC244MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
MM74HC244N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					


Truth Table

10	1A	1Y	2G	2A	2Y
L	Г	L	L	L	L
L	Н	н	L	н	н
н	L	Z	н	L	Z
н	н	Z	н	н	Z

H = HIGH Level

Z = High Impedance

© 2005 Fairchild Semiconductor Corporation DS005327

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	–1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	± 20 mA
DC Output Current, per pin (I _{OUT})	± 35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	± 70 mA
Storage Temperature Range (T _{STG})	–65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
Note 1: Absolute Maximum Ratings are those	e values	beyond wh	ich dam-

MM74HC244

age to the device may occur. Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

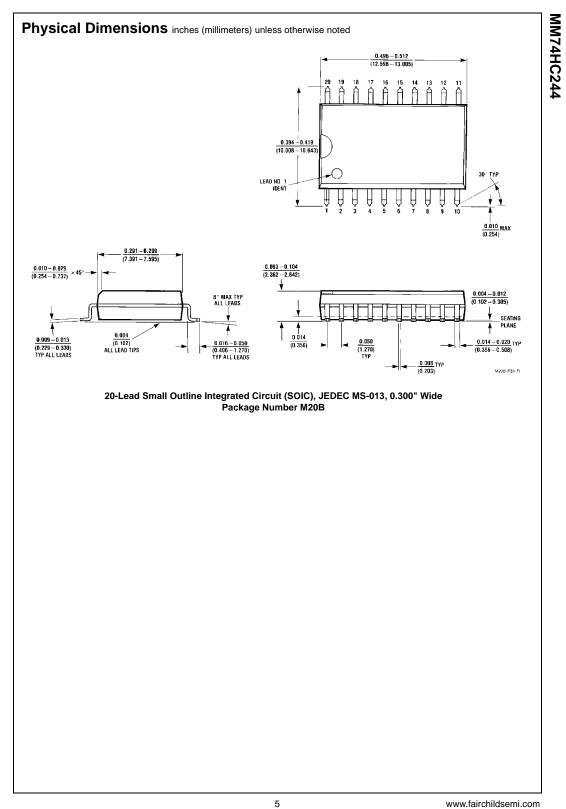
Symbol	Parameter	Conditions	Vcc	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	$T_A=-55$ to 125°C	Units
			•cc	Тур		Guaranteed L	imits	Units
VIH	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						V
		I _{OUT} ≤ 6.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.4	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		I _{OUT} ≤ 6.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤ 7.8 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	V _{IN} = V _{CC} or GND	6.0V		± 0.1	± 1.0	±1.0	μA
	Current							
I _{OZ}	Maximum 3-STATE	$V_{IN} = V_{IH}$, or V_{IL}	6.0V		± 0.5	± 5	±10	μA
	Output Leakage	$V_{OUT} = V_{CC}$ or GND						
	Current	$\overline{G} = V_{IH}$						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	160	μA
	Supply Current	I _{OUT} = 0 μA						

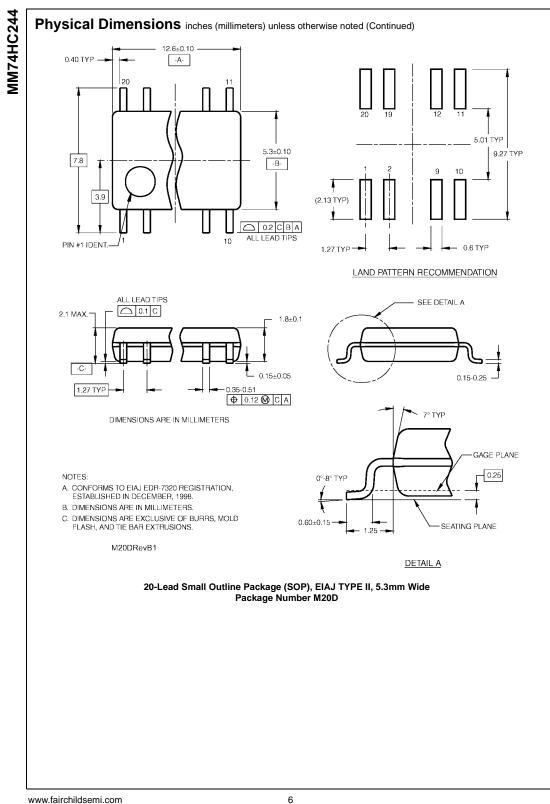
Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

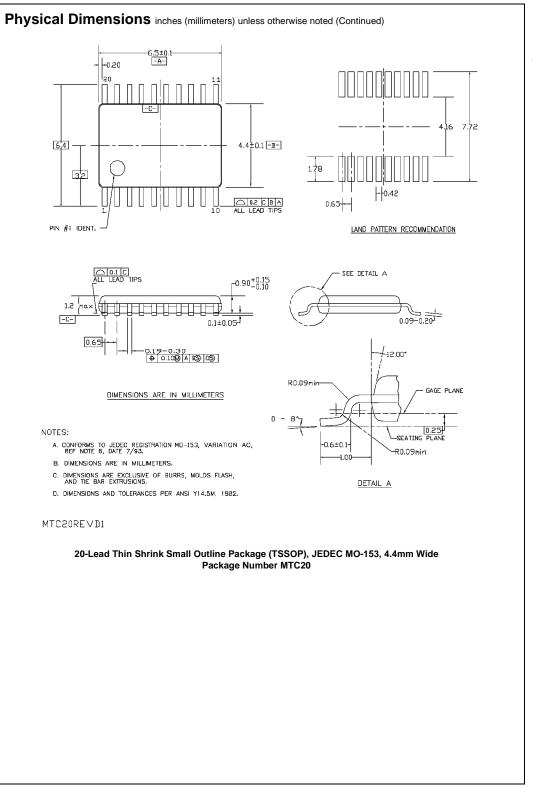
I
7
2
O
Т
4
Ň
5
5
~

AC Electrical Characteristics

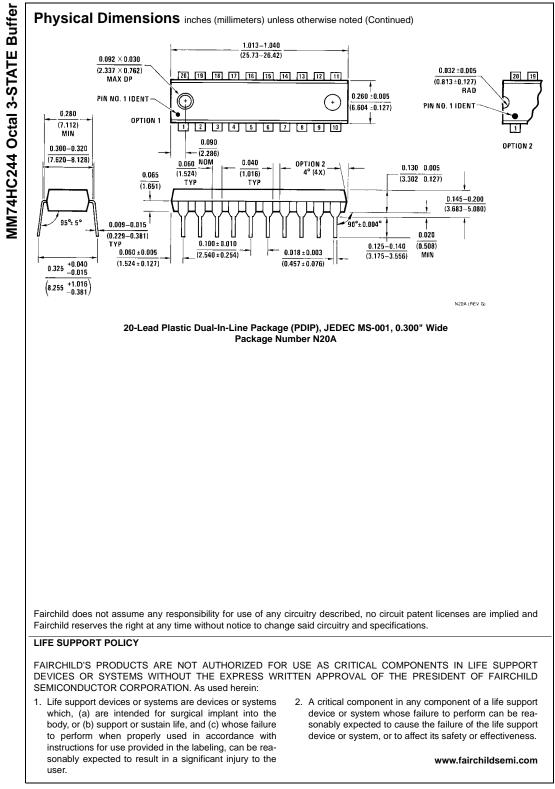
 $V_{CC} = 5V, T_A = 25^{\circ}C, t_r = t_f = 6 \text{ ns}$


Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay	C _L = 45 pF	14	20	ns
t _{PZH} , t _{PZL}	Maximum Enable Delay to Active Output	$R_L = 1 k\Omega$ $C_L = 45 pF$	17	28	ns
t _{PHZ} , t _{PLZ}	Maximum Disable Delay from Active Output	$R_L = 1 k\Omega$ $C_1 = 5 pF$	15	25	ns


AC Electrical Characteristics


 $V_{CC} = 2.0V-6.0V, C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns} (unless otherwise specified)$

Symbol	Parameter	Conditions	Vcc	T _A =	25°C	$T_A = -40 \text{ to } 85^\circ \text{C}$	T _A = -55 to 125°C	Units
			• 00	Тур	Typ Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation	$C_L = 50 \text{ pF}$	2.0V	58	115	145	171	ns
	Delay	$C_L = 150 \text{ pF}$	2.0V	83	165	208	246	ns
		$C_L = 50 \text{ pF}$	4.5V	14	23	29	34	ns
		C _L = 150 pF	4.5V	17	33	42	49	ns
		$C_L = 50 \text{ pF}$	6.0V	10	20	25	29	ns
		C _L = 150 pF	6.0V	14	28	35	42	ns
t _{PZH} , t _{PZL}	Maximum Output Enable	$R_L = 1 k\Omega$						
	Time	$C_L = 50 \text{ pF}$	2.0V	75	150	189	224	ns
		C _L = 150 pF	2.0V	100	200	252	298	ns
		$C_L = 50 \text{ pF}$	4.5V	15	30	38	45	ns
		C _L = 150 pF	4.5V	30	40	50	60	ns
		$C_L = 50 \text{ pF}$	6.0V	13	26	32	38	ns
		C _L = 150 pF	6.0V	17	34	43	51	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = 1 \ k\Omega$	2.0V	75	150	189	224	ns
	Time	$C_L = 50 \text{ pF}$	4.5V	15	30	38	45	ns
			6.0V	13	26	32	38	ns
t _{TLH} , t _{THL}	Maximum Output		2.0V		60	75	90	ns
	Rise and Fall Time		4.5V		12	15	18	ns
			6.0V		10	13	15	ns
CPD	Power Dissipation	(per buffer)						
	Capacitance (Note 5)	$\overline{G} = V_{IH}$		12				pF
		$\overline{G} = V_{IL}$		50				pF
CIN	Maximum Input			5	10	10	10	pF
	Capacitance							
C _{OUT}	Maximum Output			10	20	20	20	pF
	Capacitance		1					


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC}^2 f + I_{CC}$.

MM74HC244

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.