1MHz, 20 μ A, Rail-to-Rail I/O Op Amps with Shutdown

Absolute Maximum Ratings

Power-Supply Voltage (V _{DD} to V _{SS})	0.3V to +6.0V
IN_+, IN, OUT_, SHDN(V _{SS} - 0.3	3V) to (V _{DD} + 0.3V)
Current into IN_+, IN	±20mA
Output Short-Circuit Duration to VDD or VSS	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	

5-Pin SC70 (derate 3.1mW/°C above +70°C).....247mW 6-Pin SC70 (derate 3.1mW/°C above +70°C).....245mW

8-Pin SOT23 (derate 5.1mW/°C above +	-70°C)408mW
10-Pin µMAX (derate 5.6mW/°C above -	+70°C)444mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty \text{ connected to } V_{DD}/2, \overline{SHDN} = V_{DD}, T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRR test		1.8		5.5	V
		MAX9914/MAX9915	V _{DD} = 1.8V		20		
			V _{DD} = 5.5V		20	25	1.
Supply Current	I _{DD}	MAX9916/MAX9917	V _{DD} = 1.8V		40		μA
		MAA9910/MAA9917	V _{DD} = 5.5V		40	50	
Shutdown Supply Current	IDD(SHDN_)	SHDN_ = GND, MAX9	915/MAX9917		0.001	0.5	μA
Input Offset Voltage	V _{OS}				±0.2	±1	mV
Input-Offset-Voltage Matching		MAX9916/MAX9917			±250		μV
Input Bias Current	Ι _Β	(Note 2)			±1	±10	pА
Input Offset Current	I _{OS}	(Note 2)			±1	±10	pА
Innut Desistance	Р	Common mode			1		GΩ
Input Resistance	R _{IN}	Differential mode, -1mV < V _{IN} < +1mV			10		GΩ
Input Common-Mode Range	V _{CM}	Guaranteed by CMRR test		V _{SS} - 0.1		V _{DD} + 0.1	V
Common-Mode Rejection Ratio	CMRR	-0.1V < V _{CM} < V _{DD} + 0.1V, V _{DD} = 5.5V		70	80		dB
Power-Supply Rejection Ratio	PSRR	1.8V < V _{DD} < 5.5V		65	85		dB
Onen Leen Cain	٨	25mV < V _{OUT} < V _{DD} - 25mV, R _L = 100kΩ, V _{DD} = 5.5V		95	120		dD
Open-Loop Gain	A _{VOL}	100mV < V _{OUT} < V _{DD} - 100mV, RL = 5kΩ, V _{DD} = 5.5V		95	110		dB
			R _L = 100kΩ		2.5	5	
Output-Voltage-Swing High	V _{OH}	V _{DD} - V _{OUT}	$R_L = 5k\Omega$		50	70	mV
			$R_L = 1k\Omega$		250		
Output-Voltage-Swing Low			R _L = 100kΩ		2.5	5	
	V _{OL}	V _{OUT} - V _{SS}	$R_L = 5k\Omega$		50	70	mV
	-		$R_L = 1k\Omega$		250		
Channel-to-Channel Isolation	CH _{ISO}	Specified at DC, MAX9916/MAX9917			100		dB
Output Short-Circuit Current	I _{OUT(SC)}				±15		mA

1MHz, 20µA, Rail-to-Rail I/O Op Amps with Shutdown

Electrical Characteristics (continued)

(V_{DD} = 1.8V to 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = ∞ connected to V_{DD}/2, SHDN_ = V_{DD}, T_A = +25°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	(CONDITIONS	MIN	TYP	MAX	UNITS
		V _{DD} = 1.8V to 3.	6V, MAX9915/MAX9917			0.4	
SHDN_Logic Low	VIL	V _{DD} = 3.6V to 5.	5V, MAX9915/MAX9917			0.8	V
		V _{DD} = 1.8V to 3.	6V, MAX9915/MAX9917	1.4			
SHDN_Logic High	VIH	V _{DD} = 3.6V to 5.	5V, MAX9915/MAX9917	2			
	IIL	SHDN_ = V _{SS} , N	MAX9915/MAX9917 (Note 2)			1	
SHDN_ Input Bias Current	liH	SHDN_ = V _{DD} , I	MAX9915/MAX9917			500	- nA
Output Leakage in Shutdown	IOUT(SHDN_)	SHDN_ = V _{SS} , V MAX9915/MAX9	/ _{OUT} = 0V to V _{DD} , 917		1	500	nA
Gain-Bandwidth Product					1		MHz
Phase Margin		C _L = 15pF			45		degrees
Gain Margin		C _L = 15pF			10		dB
Slew Rate					0.5		V/µs
	C _{LOAD}	No sustained oscillations	$A_V = 1V/V$		30		
Capacitive-Load Stability (See			A _V = 10V/V		100]
the Driving Capacitive Loads			$R_L = 5k\Omega, A_V = 1V/V$		100		- pF
,			$R_{ISO} = 1k\Omega, A_V = 1V/V$		100		
Input Voltage-Noise Density		f = 1kHz	÷		160		nV/√Hz
Input Current-Noise Density		f = 1kHz			0.001		pA/√Hz
Settling Time		To 0.1%, V _{OUT} =		3.5		μs	
Delay Time to Shutdown	t _{SH}	I _{DD} = 5% of norr V _{DD} = 5.5V, V _{SF}		2		μs	
Delay Time to Enable	t _{EN}	V _{OUT} = 2.7V, V _C V _{DD} = 5.5V, V _{SF}		10		μs	
Power-Up Time		V _{DD} = 0 to 5.5V	step		2		μs

Electrical Characteristics

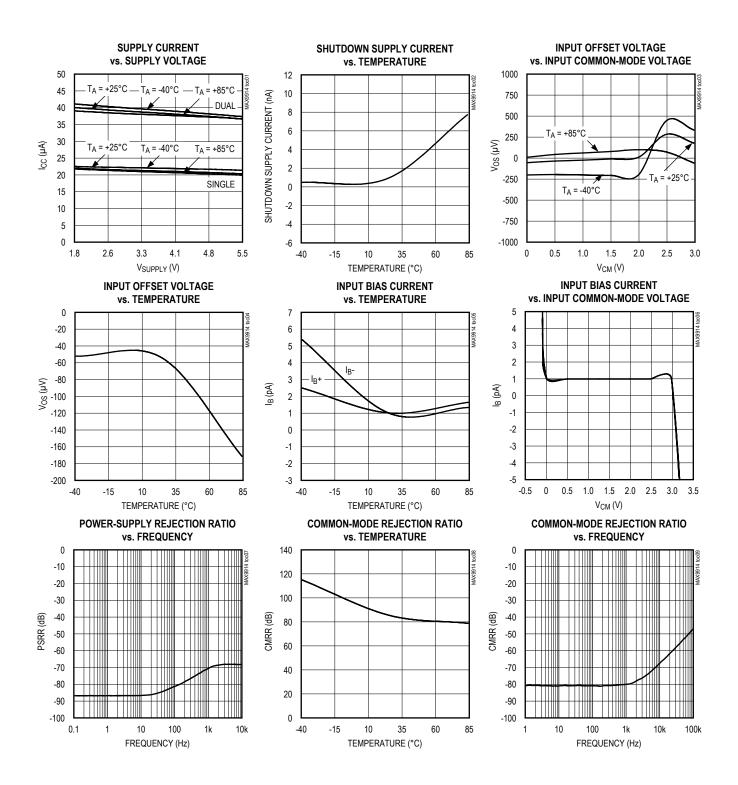
 $(V_{DD} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = \infty \text{ connected to } V_{DD}/2, \overline{SHDN} = V_{DD}, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	V _{DD}	Guaranteed by PSRR test		1.8		5.5	V
Supply Current		MAX9914/MAX9915				29	
	IDD	MAX9916/MAX9917	V _{DD} = 5.5V			60	μA
Shutdown Supply Current	I _{DD} (SHDN_)	SHDN_ = GND, MAX9915/MAX9917				1	μA
Input Offset Voltage	V _{OS}					±3	mV

1MHz, 20µA, Rail-to-Rail I/O Op Amps with Shutdown

Electrical Characteristics (continued)

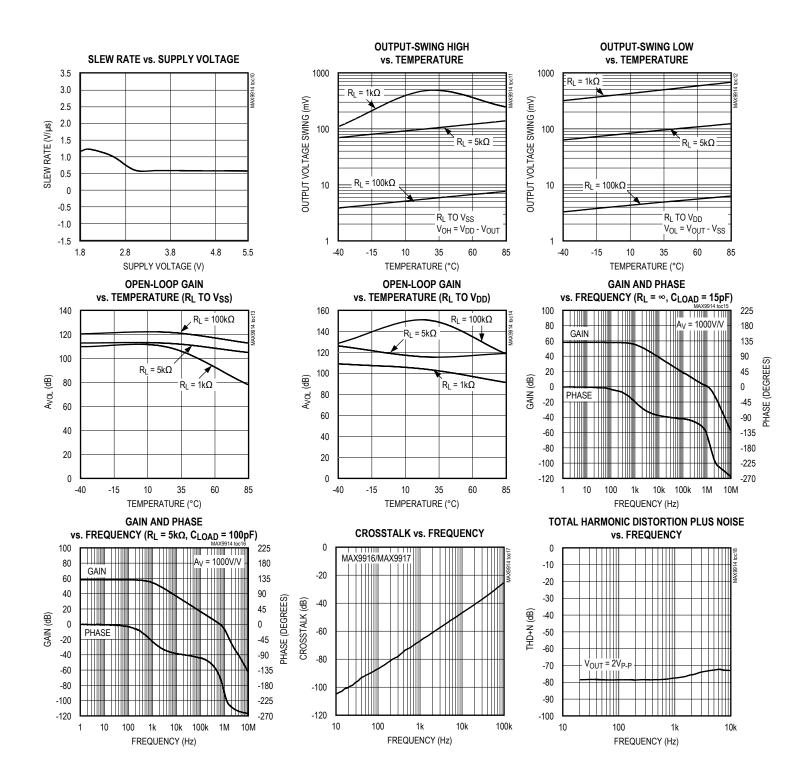
(V_{DD} = 1.8V to 5.5V, V_{SS} = 0V, V_{CM} = 0V, V_{OUT} = V_{DD}/2, R_L = ∞ connected to V_{DD}/2, SHDN_ = V_{DD}, T_A = -40°C to +85°C, unless otherwise noted.) (Note 1)


PARAMETER	SYMBOL	COND	DITIONS	MIN	TYP MA	X	UNITS
Input-Offset-Voltage Temperature Coefficient (Note 2)	TC _{VOS}				±5		µV/°C
Input Bias Current	Ι _Β				±3	0	pА
Input Offset Current	I _{OS}				±2	0	pА
Input Common-Mode Range	V _{CM}	Guaranteed by CMRR	test	V _{SS} - 0.05	V _{DD} + (.05	V
Common-Mode Rejection Ratio	CMRR	-0.05V < V _{CM} < V _{DD} +	+ 0.05V, V _{DD} = 5.5V	60			dB
Power-Supply Rejection Ratio	PSRR	1.8V < V _{DD} < 5.5V		60			dB
		25mV < V _{OUT} < V _{DD} - 25mV, R _L = 100kΩ, V _{DD} = 5.5V		85			dB
Open-Loop Gain	A _{VOL}	150mV < V _{OUT} < V _{DD} - 150mV, R _L = 5kΩ, V _{DD} = 5.5V		85			
Outrut Valtage Outre Lieb	V _{OH}	V _{DD} - V _{OUT}	$R_L = 100 k\Omega$		6	6	
Output-Voltage-Swing High			$R_L = 5k\Omega$		9)	– mV
Output Valtage Outpat au	N	$V_{OUT} - V_{SS} = \frac{R_L = 100 k\Omega}{R_L = 5 k\Omega}$	R _L = 100kΩ		5		mV
Output-Voltage-Swing Low	V _{OL}		$R_L = 5k\Omega$		9)	mv
		V _{DD} = 1.8V to 3.6V, M	AX9915/MAX9917		0.	4	
SHDN_Logic Low	VIL	V _{DD} = 3.6V to 5.5V, MAX9915/MAX9917			0.	8	V
		V _{DD} = 1.8V to 3.6V, M	IAX9915/MAX9917	1.4			.,
SHDN_Logic High	VIH	V _{DD} = 3.6V to 5.5V, MAX9915/MAX9917		2			V
	١ _{١L}	SHDN_ = V _{SS} , MAX9915/MAX9917			5		nA
SHDN_ Input Bias Current	IIH	SHDN_ = V _{DD} , MAX9	915/MAX9917		10	00	nA
Output Leakage in Shutdown	IOUT(SHDN_)	SHDN_ = V _{SS} , V _{OUT} MAX9915/MAX9917	= 0V to V _{DD} ,		10	00	nA

Note 1: Specifications are 100% tested at $T_A = +25^{\circ}C$ (exceptions noted). All temperature limits are guaranteed by design. **Note 2:** Guaranteed by design, not production tested

1MHz, 20 μ A, Rail-to-Rail I/O Op Amps with Shutdown

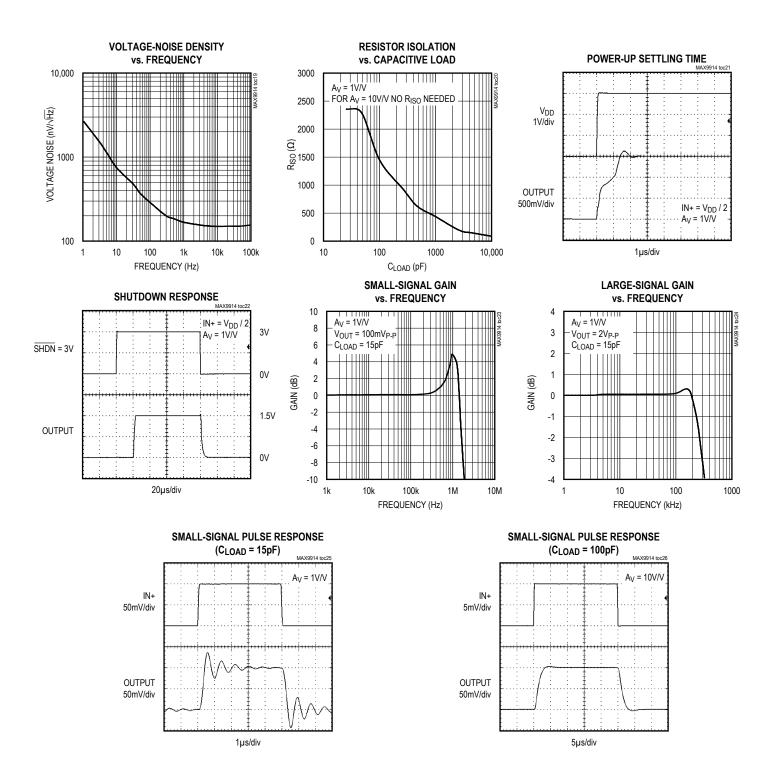
Typical Operating Characteristics


(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L to V_{DD}/2, T_A = +25°C, unless otherwise noted.)

1MHz, 20µA, Rail-to-Rail I/O Op Amps with Shutdown

Typical Operating Characteristics (continued)

(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L to V_{DD}/2, T_A = +25°C, unless otherwise noted.)

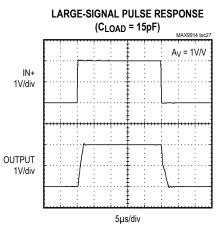


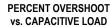
www.maximintegrated.com

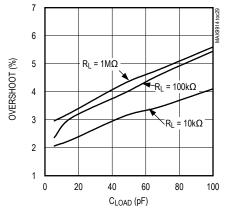
1MHz, 20 μ A, Rail-to-Rail I/O Op Amps with Shutdown

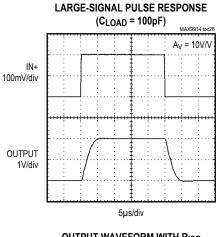
Typical Operating Characteristics (continued)

(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L to V_{DD}/2, T_A = +25°C, unless otherwise noted.)

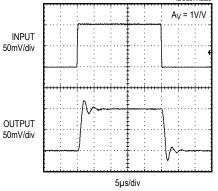


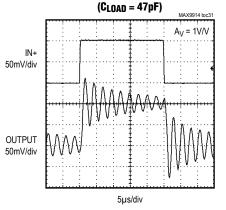

www.maximintegrated.com


1MHz, 20 μ A, Rail-to-Rail I/O Op Amps with Shutdown


Typical Operating Characteristics (continued)

(V_{DD} = 3V, V_{SS} = V_{CM} = 0V, R_L to V_{DD}/2, T_A = +25°C, unless otherwise noted.)





OUTPUT WAVEFORM WITH RISO ($C_{LOAD} = 47 pF, R_{ISO} = 2.3 k\Omega$)

OUTPUT WAVEFORM WITHOUT RISO

1MHz, 20 μ A, Rail-to-Rail I/O Op Amps with Shutdown

Pin Description

	Р	IN		NAME	FUNCTION
MAX9914	MAX9915	MAX9916	MAX9917		FUNCTION
1	1	_	_	IN+	Noninverting Amplifier Input
2	2	4	4	V _{SS}	Negative Supply Voltage
3	3	—	_	IN-	Inverting Amplifier Input
4	4	_	_	OUT	Amplifier Output
5	6	8	10	V _{DD}	Positive Supply Voltage
—	5	_	_	SHDN	Shutdown
—	_	1	1	OUTA	Amplifier Output Channel A
—	_	2	2	INA-	Inverting Amplifier Input Channel A
	_	3	3	INA+	Noninverting Amplifier Input Channel A
—	_	—	5	SHDNA	Shutdown Channel A
—	_	_	6	SHDNB	Shutdown Channel B
_	_	5	7	INB+	Noninverting Amplifier Input Channel B
	_	6	8	INB-	Inverting Amplifier Input Channel B
—	_	7	9	OUTB	Amplifier Output Channel B

Detailed Description

Featuring a maximized ratio of gain bandwidth to supply current, low operating supply voltage, low input bias current, and rail-to-rail inputs and outputs, the MAX9914–MAX9917 are an excellent choice for precision or general-purpose low-current, low-voltage, battery-powered applications. These CMOS devices consume an ultra-low $20\mu A$ (typ) supply current and a $200\mu V$ (typ) offset voltage. For additional power conservation, the MAX9914/MAX9917 feature a lowpower shutdown mode that reduces supply current to 1nA (typ), and puts the amplifiers' output in a highimpedance state. These devices are unity-gain stable with a 1MHz gain-bandwidth product driving capacitive loads up to 30pF. The capacitive load can be increased to 100pF when the amplifier is configured for a 10V/V gain.

Rail-to-Rail Inputs and Outputs

The MAX9914–MAX9917 amplifiers all have a parallelconnected n- and p-channel differential input stage that allows an input common-mode voltage range that extends 100mV beyond the positive and negative supply rails, with excellent common-mode rejection. The MAX9914–MAX9917 are capable of driving the output to within 5mV of both supply rails with a 100k Ω load. These devices can drive a 5k Ω load with swings to within 60mV of the rails. Figure 1 shows no clipping at the output voltage swing of the MAX9914–MAX9917 configured as a unity-gain buffer powered from a single 3V supply.

Low Input Bias Current

The MAX9914–MAX9917 feature ultra-low 1pA (typ) input bias current. The variation in the input bias current is minimal with changes in the input voltage due to very high input impedance (in the order of $1G\Omega$).

Applications Information

Driving Capacitive Loads

The MAX9914–MAX9917 amplifiers are unity-gain stable for loads up to 30pF. However, the capacitive load can be increased to 100pF when the amplifier is configured for a minimum gain of 10V/V.

Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load (Figure 2). Also, in unity-gain applications with relatively small R_L (about 5k Ω), the capacitive load can be increased up to 100pF.

1MHz, 20µA, Rail-to-Rail I/O Op Amps with Shutdown

Power-Supply Considerations

The MAX9914–MAX9917 are optimized for single 1.8V to 5.5V supply operation. A high amplifier power-supply rejection ratio of 85dB (typ) allows the devices to be powered directly from a battery, simplifying design and extending battery life.

Power-Up Settling Time

The MAX9914–MAX9917 typically require 2µs after power-up. Supply settling time depends on the supply voltage, the value of the bypass capacitor, the output impedance of the incoming supply, and any lead resistance or inductance between components. Op amp settling time depends primarily on the output voltage and is slew-rate limited. Figure 3 shows the MAX991_ in a noninverting voltage follower configuration with the input held at midsupply. The output settles in approximately 3.5µs for V_{DD} = 3V (see the *Typical Operating Characteristics* for the Power-Up Settling Time graph).

Shutdown Mode

The MAX9915 and MAX9917 feature active-low shutdown inputs. The MAX9915 and MAX9917 enter shutdown in 2µs (typ) and exit shutdown in 10µs (typ). The amplifiers' outputs are high impedance in shutdown mode. Drive SHDN low to enter shutdown. Drive SHDN high to enable the amplifier. The MAX9917 dual amplifier features separate shutdown inputs. Shut down both amplifiers for lowest quiescent current.

Power-Supply Bypassing and Layout

Bypass V_{DD} with a $0.1 \mu F$ capacitor to ground as close to the pin as possible to minimize noise.

Good layout techniques optimize performance by decreasing the amount of stray capacitance and inductance to the op amp's inputs and outputs. Minimize stray capacitance and inductance, by placing external components close to the IC.

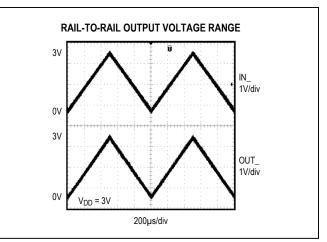
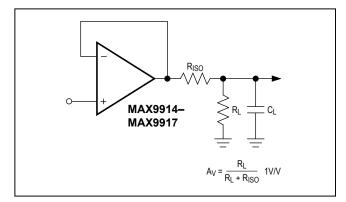
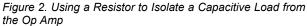




Figure 1. Rail-to-Rail Output Voltage Range

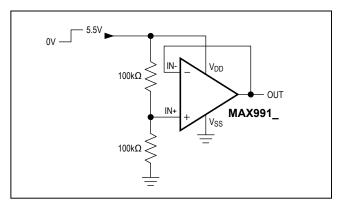
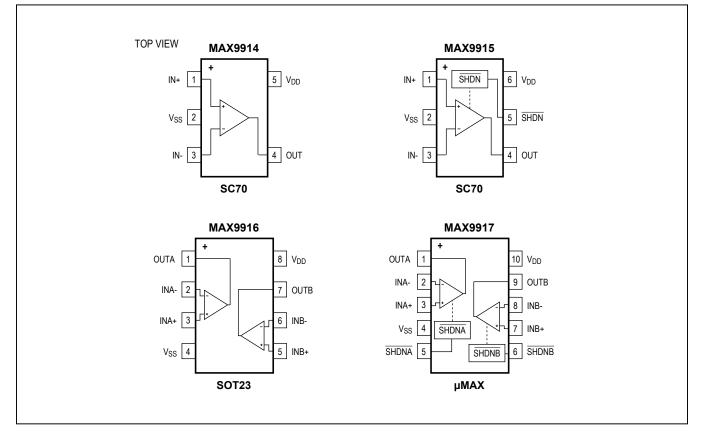



Figure 3. Power-Up Test Configuration

1MHz, 20 μ A, Rail-to-Rail I/O Op Amps with Shutdown

Pin Configurations

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC70	X5+1	<u>21-0076</u>	<u>90-0188</u>
6 SC70	X6SN+1	<u>21-0077</u>	<u>90-0189</u>
8 SOT23	K8+5	<u>21-0078</u>	<u>90-0176</u>
10 µMAX	U10+2	<u>21-0061</u>	<u>90-0330</u>

1MHz, 20 μ A, Rail-to-Rail I/O Op Amps with Shutdown

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/04	Initial release	—
1	10/05	Removed future product asterisks from MAX9916/MAX9917, edited V _{OL} / V _{OH} specifications in the EC table, removed MAX9916 8-pin μ MAX package.	1, 2, 11
2	6/13	Updated Electrical Characteristics	3, 4
3	11/14	Updated Absolute Maximum Ratings and Electrical Characteristics	2, 3, 4

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2014 Maxim Integrated Products, Inc. | 12