ABSOLUTE MAXIMUM RATINGS

(Voltages referenced to GND)	
V+, IN	0.3V to +6V
COM , NO_, NC_ (Note 1)	0.3V to $(V + + 0.03V)$
Continuous Current (any terminal)	±75mA
Peak Current (NO_, NC_, COM_)	
(pulsed at 1ms, 10% duty cycle)	±200mA

Continuous Power Dissipation (TA = +70°C)
14-Pin TSSOP (derate 6.3mW/°C above +70°C)500mW
14-Pin Narrow SO (derate 8.00mW/°C above +70°C)640mW
14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)800mW
Operating Temperature Ranges
MAX461_C0°C to +70°C
MAX461_E40°C to +85°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10sec)+300°C

Note 1: Signals on NO_, NC_, or COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+ = +5V \pm 10\%, V_{IN_H} = 2.4V, V_{IN_L} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range (Note 3)	V _{COM} _, V _{NO} _, V _{NC} _			0		V+	V
On-Resistance	Ron	$V + = 4.5V,$ $I_{COM} = 10mA,$	T _A = +25°C		8	10	Ω
On-nesistance	HON	V _{NO_} = V _{NC_} = 3V	TA = TMIN to TMAX			13	
On-Resistance Match Between	APou	V+ = 4.5V,	T _A = +25°C		0.2	1	Ω
Channels (Note 4)	ΔR _{ON}	ICOM_ = 10mA, V _{NO_} = V _{NC_} = 3V	TA = TMIN to TMAX			1.2	1 52
On-Resistance Flatness	Dei verovii	V+ = 4.5V; I _{COM} _ = 10mA;	T _A = +25°C		0.3	1	Ω
(Note 5)	RFLAT(ON)	V _{NO} = V _{NC} = 3V, 2V, 1V	$T_A = T_{MIN}$ to T_{MAX}			1.2	22
NO_ or NC_ Off-Leakage	luc (o==)	V+ = 5.5V;	T _A = +25°C	-1	0.01	1	nA
Current (Note 6)	INO(OFF)	V _{COM} = 1V, 4.5V; V _{NO} = 4.5V, 1V	TA = TMIN to TMAX	-6		6	TIA.
COM_ Off-Leakage Current (Note 6)	ICOM(OFF)	V+ = 5.5V; VCOM_ = 1V, 4.5V; VNO_ = VNC_ = 4.5V, 1V	T _A = +25°C	-1	0.01	1	Λ
			TA = TMIN to TMAX	-6		6	- nA
COM_ On-Leakage Current	le et vern	V+ = 5.5V; V _{COM} = 1V, 4.5V;	T _A = +25°C	-2	0.02	2	n ^
(Note 6)	ICOM(ON)	V _{NO} _ = V _{NC} _ = 1V, 4.5V, or floating	TA = TMIN to TMAX	-12		12	- nA

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V+ = +5V \pm 10\%, V_{IN_H} = 2.4V, V_{IN_L} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
LOGIC INPUT	'							
Input Current with Input Voltage High	IIN_H	V _{IN} _ = 2.4V	V _{IN} _ = 2.4V		0.3	10	nA	
Input Current with Input Voltage Low	I _{IN_L}	V _{IN} _ = 0.8V		-10	0.3	10	nA	
Input Voltage High	V _{IN_H}			2.4			V	
Input Voltage Low	V _{IN_L}					0.8	V	
SWITCH DYNAMIC				•			•	
Turn-On Time (Note 3)	ton	V _{COM} = 3V, Figure 2	T _A = +25°C		5	12	ne	
Turri on Time (Note o)	1014	VCON_ = 5V, 1 iguic 2	$T_A = T_{MIN}$ to T_{MAX}			14	ns	
Turn-Off Time (Note 3)	toff	VCOM_ = 3V, Figure 2	T _A = +25°C		2.5	10	ns	
Tail on Time (Note o)	1011	VCON_ = 0V, 1 iguro 2	$VCOM_{-} = SV$, Figure 2 $T_A = T_{MIN}$ to T_{MAX}			12	115	
On-Channel Bandwidth	BW	Signal = 0dBm, Figure TA = +25°C	Signal = 0dBm, Figure 4, 50Ω in and out, TA = $+25^{\circ}$ C		70		MHz	
Charge Injection	Q	Signal = 0dBm, Figure 4, 50Ω in and out, T _A = $+25^{\circ}$ C			6.5		рС	
Off-Isolation (Note 7)	VISO	$R_L = 50\Omega$, $f = 100$ kHz, Figure 4, $T_A = +25$ °C			-85		dB	
Crosstalk (Note 8)	VCT	$R_L = 50\Omega$, $f = 100$ kHz, Figure 5, $T_A = +25$ °C			-96		dB	
NO_ or NC_ Capacitance	C _(OFF)	f = 1MHz, Figure 6, T _A = +25°C			5		pF	
COM_ Off-Capacitance	CCOM(OFF)	$f = 1MHz$, Figure 6, $TA = +25^{\circ}C$			5		pF	
COM_ On-Capacitance	C _C OM(ON)	$f = 1MHz$, Figure 6, $T_A = +25$ °C			11		pF	
Total Harmonic Distortion	THD	600Ω IN and OUT, f = 20Hz to 20kHz, 2Vp-p, TA = +25°C			0.034		%	
POWER SUPPLY		1		1			1	
Power-Supply Range				2		5.5	V	
Power-Supply Current	l+	VIN = 0 or V+, all switches on or off		-1	0.001	1	μΑ	

ELECTRICAL CHARACTERISTICS—Single +3.3V Supply

 $(V+ = +3.3V \pm 10\%, V_{IN_H} = 2.4V, V_{IN_L} = 0.5V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
ANALOG SWITCH				1			
Analog Signal Range (Note 3)	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	V
On-Resistance	R _{ON}	V+ = 3V, I _{NO} = 10mA,	T _A = +25°C		8	20	Ω
On-nesistance	TION	$V_{COM} = 1.5V$	TA = TMIN to TMAX			25	52
On-Resistance Match Between	A.D.o.u	V+ = 3V,	T _A = +25°C		0.5	1.5	0
Channels (Note 4)	ΔRon		TA = TMIN to TMAX			2	Ω
NO_ or NC_ Off-Leakage		V+ = 3.6V;	T _A = +25°C	-1	0.002	1	
Current (Notes 3, 6)	INO(OFF)	V _{COM} _ = 1V, 3V; V _{NO} _ = V _{NC} _ = 3V, 1V	TA = TMIN to TMAX	-10		10	nA
COM_ Off-Leakage Current	1	V+ = 3.6V;	T _A = +25°C	-1	0.002	1	Λ
(Notes 3, 6)	COM(OFF) VCOM = IV, 3V;	$V_{COM} = V_{NC} = 3V, 1V$	TA = TMIN to TMAX	-10		10	nA
COM_ On-Leakage Current		V+ = 3.6V; V _{COM} _ = 1V, 3V;	T _A = +25°C	-1	0.002	1	
(Notes 3, 6)	ICOM(ON)	$V_{NO} = V_{NC} = 1V$, $V_{NO} = 1$	T _A = T _{MIN} to T _{MAX}	-10		10 nA	nA
LOGIC INPUT			I	1			
Input Current with Input Voltage High	I _{IN_H}	V _{IN} _ = 2V		-10	0.003	10	nA
Input Current with Input Voltage Low	I _{IN_L}	V _{IN} _ = 0.8V		-10	0.003	10	nA
Input Voltage High	V _{IN_H}			2.0			V
Input Voltage Low	V _{IN_L}					0.8	V
SWITCH DYNAMIC (Note 3)				11			1
Turn-On Time	ton	V _{COM} _ = 1.5V, Figure 2	T _A = +25°C		6	15	ns
Turri Ori Time	TON		TA = TMIN to TMAX			20	110
Turn-Off Time	toff	Vcoм_ = 1.5V, Figure 2	$T_A = +25^{\circ}C$ $T_A = T_{MIN} \text{ to } T_{MAX}$		4	12 15	ns
Charge Injection	Q	C _L = 1nF, V _{GEN} = 0, R _{GEN} = 0, T _A = +25°C			6.5		рС
POWER SUPPLY							'
Power-Supply Current	l+	$V+=3.6V,V_{IN}=0$ or $V+,$ all channels on or off		-1	0.001	1	μА

______NIXI/N

ELECTRICAL CHARACTERISTICS—Single +2.5V Supply

(V+ = +2.5V, VINH = 0.7VCC, VINL = 0.5V, TA = TMIN to TMAX, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH	•						
Analog Signal Range (Note 3)	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	V
COM_ to NO_ or NC_	Ron	V+ = 2.5V,	T _A = +25°C		30	60	Ω
On-Resistance	HON	$I_{COM} = 10mA,$ $V_{NO} = 1.2V$	$T_A = T_{MIN}$ to T_{MAX}			100	22
SWITCH DYNAMIC (Note 3)							
Turn-On Time	toN	V_{NO} or V_{NC} = 1V, T_A = +25°C			6.5		ns
Turn-Off Time	toff	V _{NO_} or V _{NC_} = 1V, T _A = +25°C			2.8		ns

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
- Note 3: Guaranteed by design.
- Note 4: $\Delta R_{ON} = R_{ON} \text{ (max)} R_{ON} \text{ (min)}.$
- **Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
- Note 6: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at +25°C.
- **Note 7:** Off-Isolation = $20log_{10}$ (V_{COM} _ / V_{NO} _), V_{COM} _ = output, V_{NO} _ = input to off switch.
- Note 8: Between any two switches.

Typical Operating Characteristics

 $(V+ = +5V, GND = 0, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

(V+ = +5V, GND = 0, T_A = +25°C, unless otherwise noted.)

Pin Description

	PIN		NAME	FUNCTION
MAX4614	MAX4615	MAX4616	NAME	FUNCTION
1, 3, 8	_	1, 8	NO1-NO3	Analog Switch Normally Open Terminal (bidirectional)
_	1, 3, 8	_	NC1-NC3	Analog Switch Normally Closed Terminal (bidirectional)
_	_	3	NC2	Analog Switch Normally Closed Terminal (bidirectional)
2, 4, 9, 10	2, 4, 9, 10	2, 4, 9, 10	COM1-COM4	Analog Switch Common Terminal (bidirectional)
5, 6, 12, 13	5, 6, 12, 13	5, 6, 12, 13	IN1-IN4	Logic Control Inputs
7	7	7	GND	Ground
_	11	11	NC4	Analog Switch Normally Closed Terminal (bidirectional)
11			NO4	Analog Switch Normally Open Terminal (bidirectional)
14	14	14	V+	Positive Supply Voltage

Applications Information

Power-Supply Sequencing and Overvoltage Protection

Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the devices.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals or logic inputs, especially if the analog or logic signals are not current limited. If this sequencing is not possible, and if the analog or logic inputs are not current limited to 20mA, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7V) below V+ (for D1), and to a diode drop above ground (for D2). Leakage is unaffected by adding the diodes. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage (V+) must not exceed 6V.

Adding protection diodes causes the logic thresholds to be shifted relative to the power-supply rails. This can be significant when low supply voltages (+5V or less) are used. With a +5V supply, TTL compatibility is not guaranteed when protection diodes are added. Driving IN1 and IN2 all the way to the supply rails (i.e., to a

Figure 1. Overvoltage Protection Using Two External Blocking Diodes

diode drop higher than the V+ pin, or to a diode drop lower than the GND pin) is always acceptable.

Protection diodes D1 and D2 also protect against some overvoltage situations. With Figure 1's circuit, if the supply voltage is below the absolute maximum rating, and if a fault voltage up to the absolute maximum rating is applied to an analog signal pin, no damage will result.

Test Circuits/Timing Diagrams

Figure 2. Switching Time

Test Circuits/Timing Diagrams (continued)

Figure 3. Charge Injection

Figure 4. Off-Isolation/On-Channel Bandwidth

Figure 5. Crosstalk

Test Circuits/Timing Diagrams (continued)

Figure 6. Channel Off/On-Capacitance

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4615CUD	0°C to +70°C	14 TSSOP
MAX4615CSD	0°C to +70°C	14 Narrow SO
MAX4615CPD	0°C to +70°C	14 Plastic DIP
MAX4615EUD	-40°C to +85°C	14 TSSOP
MAX4615ESD	-40°C to +85°C	14 Narrow SO
MAX4615EPD	-40°C to +85°C	14 Plastic DIP
MAX4616CUD	0°C to +70°C	14 TSSOP
MAX4616CSD	0°C to +70°C	14 Narrow SO
MAX4616CPD	0°C to +70°C	14 Plastic DIP
MAX4616EUD	-40°C to +85°C	14 TSSOP
MAX4616ESD	-40°C to +85°C	14 Narrow SO
MAX4616EPD	-40°C to +85°C	14 Plastic DIP

Chip Information

TRANSISTOR COUNT: 89

Package Information

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1999 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.