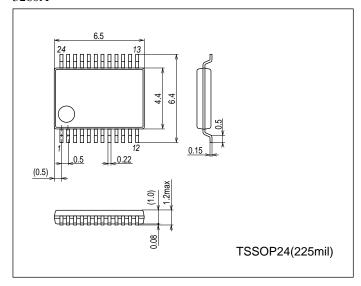
LV8013T

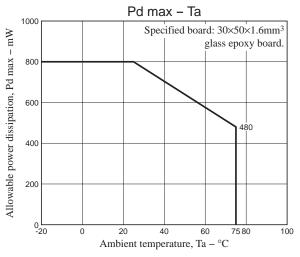
Allowable Operating Conditions at Ta = 25°C, SGND = PGND = 0V

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage (For load)	VM		2.0 to 15.0	V
Supply voltage (For control)	VCC		2.7 to 5.5	V
Input signal voltage	V _{IN}		0 to V _{CC}	V
Input signal frequency	f max	Duty = 50%	200	kHz
Capacitor for charge pump	C1, C2,		0.001 to 0.1	μF
	CVG1, CVG2			

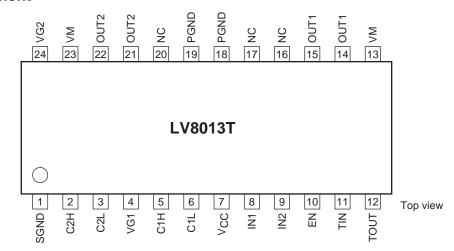
$\textbf{Electrical Characteristics} \ \, \text{at Ta} = 25^{\circ}\text{C}, \ \, V_{CC} = 5.0\text{V}, \ \, \text{VM} = 12.0\text{V}, \ \, \text{SGND} = PGND = 0\text{V}, \ \, \text{unless especially specified}.$

Parameter		Symbol	Conditions	Re-	Ratings			Unit
		Symbol	Conditions	marks	min	typ	max	Offic
Supply current for load at standby 1		IM1	EN = 0V	1			1.0	μΑ
Supply current for load at standby 2		IM2	V _{CC} = 0V, Each input = 0V	1			1.0	μА
Supply current fo standby	r control at	ICO	EN = 0V, IN1 = IN2 = 0V	2	12.5	25	50	μА
Current drain dur	ing operation 1	IC1	$V_{CC} = 3.3V$, EN = 3.3V, VG at no load	3		0.6	1.0	mA
Current drain dur	ing operation 2	IC2	V _{CC} = 5.0V, EN = 5V, VG at no load	3		0.7	1.2	mA
H-level input volta	age	VIH	2.7V ≤ V _{CC} ≤ 5.5V		0.6×V _{CC}		VCC	V
L-level input volta	age	V _{IL}	2.7V ≤ V _{CC} ≤ 5.5V		0		0.2×V _{CC}	V
H-level input curr (IN1, IN2, TIN)	rent	lН	V _{IN} = 5V	4	12.5	25	50	μА
L-level input curre (IN1, IN2, TIN)	ent	lIΓ	V _{IN} = 0V	4	-1.0			μА
Pull-up resistance	e (EN)	RUP		4	100	200	400	kΩ
Pull-down resistance (EN)		RDN		4	100	200	400	kΩ
Output ON resistance		RON	Sum of ON resistances at top and bottom	5		0.3	0.5	Ω
Charge pump vol	ltage1	VG1	V _{CC} ×2 - 5.4V CLAMP circuit	6	5.15	5.4	5.65	V
Charge pump vol	ltage2	VG2	VM + VG1 Voltage raising circuit	6	17.1	17.4	17.6	V
Low-voltage detection operation voltage		VCS	V _{CC} voltage	7	2.1	2.25	2.4	V
Thermal shutdown operation temperature		Tth	Design guarantee	8	150	180	210	°C
Charge pump car	pacity 1	VG1LOAD	IG1 = 500μA	9	5.0	5.3		V
Charge pump car	pacity 2	VG2LOAD	IG2 = 500μA	9	16.0	16.5		V
IG current dissipation (Fin = 20kHz)		IG		10			350	μА
Charge pump start time		TVG	CVG = 0.1μF	11			1.0	ms
Output Tu	urn on time	TPLH		12		0.5	1.0	μs
block Tu	urn off time	TPHL		12		0.5	1.0	μs
TOUT To	urn on time	TON	C = 500pF	12		0.5	20	μs
Tu	urn off time	TOFF	C = 500pF	12		0.5	20	μs
TOUT output voltage H		ТОН	C = 500pF		VG2-0.1	VG2		V
TOUT output volt	tage L	TOL	C = 500pF			0.05	0.1	V

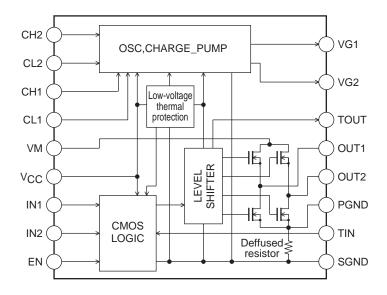

^{*} Design guarantee : This characteristics is not measured. Refer to next page for remarks.


Remarks

- 1. It shows current dissipation of VM pin in output OFF state.
- 2. It shows current dissipation of V_{CC} pin in stand-by state. (The standard current depends on EN pin pull-down resistor.)
- 3. It shows current dissipation of V_{CC} pin in state of EN = 5V (stand-by), including current dissipation of V_{CC} pin.
- 4. IN1, IN2 and TIN pin are built-in pull-down resistor, EN pin is built-in pull-up resistor.
- 5. It shows sum of upper and lower saturation voltages of OUT pin.
- 6. It controls charge-pump oscillation and makes specified voltage.
- 7. When low voltage is detected, the lower output is turned OFF.
- 8. When thermal protection circuit is activated, the lower output is turned OFF. When the heat temperature is fallen, it is turned ON again.
- 9. IG (VG pin load current) = $500\mu A$
- 10. It shows VG pin current dissipation in state of PWM input for IN pin.
- 11. It specifies start-up time from 10% to 90% when VG is in non-load state (when setting the capacitor between VG and GND to $0.1\mu F$ and V_{CC} is 5V).
- 12. It specifies 10% to 90% for start-up and 90% to 10% for shut-down.


Package Dimensions

unit : mm (typ) 3260A



Pin Assignment

Block Diagram

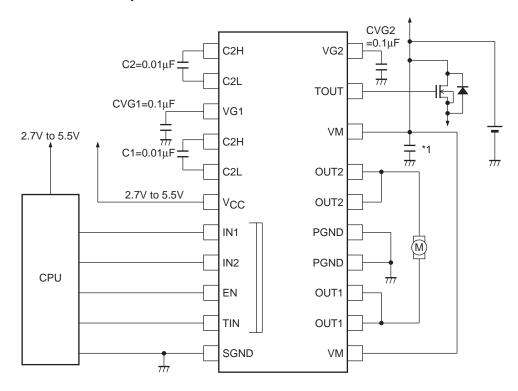
Truth Table

EN	IN1	IN2	TIN	OUT1	OUT2	TOUT	Charge Pump	Mode
	Н	Н	-	L	L	-		Brake
	Н	L	-	Н	L	-	ON	Forward
	L	Н	-	L	Н	-		Reverse
Н	L	L	-	Z	Z	-		Standby
	-	-	L	-	-	L		Tr-OFF
	-	-	Н	-	-	Н		Tr-ON
L	-	-	-	L	L	L	OFF	Standby

- : Don't care, Z : High-Impedance

- Current drain becomes zero in the standby mode. (Leak current from EN pin is excluded)
- The output side becomes OFF, with motor drive stopped, during voltage reduction and thermal protection. Also, the charge of VG2 is discharged with an internal circuit at decreasing voltage.

Pin Function


Pin No.	Pin name	Function	Equivalent circuit
6	C1L	Voltage raising capacitor connection pin.	C1L C
5	C1H	Voltage raising capacitor connection pin.	C1H VG1
8 9 11	IN1 IN2 TIN	Driver output changeover. TOUT output control pin. (Built-in pull-down resistor)	VCC

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	Function	Equivalent circuit
10	EN	Logic enable pin.	· · · · · · · · · · · · · · · · · · ·
10	Liv	(Built-in pull-up resistor)	VCC \$200kΩ 7///
14 15 21 22 18 19	OUT1 OUT1 OUT2 OUT2 PGND PGND	Driver output pin.	OUT1 OUT2
12	TOUT	Voltage raising output pin.	VG2
13 23	VM VM	Motor power supply. (both terminals to be connected)	
7	Vcc	Logic power supply.	
4	VG1	Voltage raising circuit 1. V _{CC} × 2 Clamped to 5.4V	VG1 C1H 0.01μF 0.01μF C1L
24 2 3	VG2 C2H C2L	Voltage raising circuit 2. VM + VG1 Voltage raising capacitor connection pin. VG2 is discharged in abnormal.	VM C2H 0.01μF C2L
1	SGND	Logic GND	
18	PGND	Driver GND	
19	PGND	(both terminals to be connected)	

Application Circuit Example

*1 : Connect a kickback absorption capacitor directly near IC. Coil kick-back may cause rise of the voltage of VM line, and the voltage exceeding the maximum rating may be applied momentarily, resulting in deterioration or damage of IC.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa