
Table 2. Pin Description

N°	Pin	Function
1	BOOTSTRAP	A C _{boot} capacitor connected between this terminal and the output allows to drive properly the internal D-MOS transistor.
2	RESET DELAY	A C _d capacitor connected between this terminal and ground determines the reset signal delay time.
3	RESET OUT	Open Collector Reset/power Failand the output voltages are safe. Signal Output. This output is high when the supply
4	RESET INPUT	Input of Power Fail Circuit. The threshold is 5.1V. It may be connected via a divider to the input for power fail function. It must be connected to the pin 14 an external $30 \text{K}\Omega$ resistor when power fail signal not required.
5, 6 15, 16	GROUND	Common Ground Terminal
7	FREQUENCY COMPENSATION	A series RC network connected between this terminal and ground determines the regulation loop gain characteristics.
8	SOFT START	Soft Start Time Constant. A capacitor is connected between the sterminal and ground to define the soft start time constant.
9	FEEDBACK INPUT	The Feedback Terminal of the Regulation Loop. The output is connected directly to this terminal for 5.1V operation; It is connected via a divider for higher voltages.
10	SYNC INPUT	Multiple L4972A's are synchronized by connecting pin 10 inputs together or via an external syncr. pulse.
11	SUPPLY VOLTAGE	Unregulated Input Voltage.
12, 19	N.C.	Not Connected.
13	V_{ref}	5.1V V _{ref} Device Reference Voltage.
14	V _{start}	Internal Start-up Circuit to Drive the Power Stage.
17	OSCILLATOR	$R_{\text{osc}}.$ External resistor connected to ground determines the constant charging current of $C_{\text{osc}}.$
18	OSCILLATOR	C_{osc} . External capacitor connected to ground determines (with R_{osc}) the switching frequency.
20	OUTPUT	Regulator Output.

Figure 3. Pin Connection (Top view)

Table 3. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V ₁₁	Input Voltage	55	V
V ₁₁	Input Operating Voltage	50	V
V ₂₀	Output DC Voltage Output Peak Voltage at t = 0.1 µs f = 200kHz	-1 -5	V V
l ₂₀	Maximum Output Current	Internally Limited	
Vı	Boostrap Voltage Boostrap Operating Voltage	65 V ₁₁ + 15	V V
V ₄ , V ₈	Input Voltage at Pins 4, 12	12	V
V ₃	Reset Output Voltage	50	V
l ₃	Reset Output Sink Current	50	mA
V ₂ , V ₇ , V ₉ , V ₁₀	Input Voltage at Pin 2, 7, 9, 10	7	V
l ₂	Reset Delay Sink Current	30	mA
I ₇	Error Amplifier Output Sink Current	1	Α
I ₈	Soft Start Sink Current	30	mA
P _{tot}	Total Power Dissipation at $T_{PINS} \le 90^{\circ}C$ at $Tamb = 70^{\circ}C$ (No copper area on PCB)	5 / 3.75(*) 1.3/1 (*)	W W
T _J , T _{stg}	Junction and Storage Temperature	-40 to 150	°C

^(*) SO-20

Table 4. Thermal Data

Symbol	Parameter	PowerDIP	SO20	Unit
R _{th j-pins}	Thermal Resistance Junction-Pins max,	12	16	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient max,	60	80	°C/W

3 Circuit Operation

The L4972A is a 2A monolithic stepdown switching regulator working in continuous mode realized in the new BCD Technology. This technology allows the integration of isolated vertical DMOS power transistors plus mixed CMOS/Bipolar transistors.

The device can deliver 2A at an output voltage adjustable from 5.1V to 40V and contains diagnostic and control functions that make it particularly suitable for microprocessor based systems.

3.1 BLOCK DIAGRAM

The block diagram shows the DMOS power transistors and the PWM control loop. Integrated functions include a reference voltage trimmed to $5.1V \pm 2\%$, soft start, undervoltage lockout, oscillator with feedforward control, pulse by pulse current limit, thermal shutdown and finally the reset and power fail circuit. The reset and power fail circuit provides an output signal for a microprocessor indicating the status of the system.

Device turn on is around 11V with a typical 1V hysterysis, this threshold porvides a correct voltage for the driving stage of the DMOS gate and the hysterysis prevents instabilities.

An external bootstrap capacitor charge to 12V by an internal voltage reference is needed to provide correct gate drive to the power DMOS. The driving circuit is able to source and sink peak currents of around 0.5A to the gate of the DMOS transistor. A typical switching time of the current in the DMOS transistor is 50ns. Due to the fast commutation switching frequencies up to 200kHz are possible.

The PWM control loop consists of a sawtooth oscillator, error amplifier, comparator, latch and the output

47/

stage. An error signal is produced by comparing the output voltage with the precise $5.1V \pm 2\%$ on chip reference. This error signal is then compared with the sawtooth oscillator in order to generate frixed frequency pulse width modulated drive for the output stage. A PWM latch is included to eliminate multiple pulsing within a period even in noisy environments.

The gain and stability of the loop can be adjusted by an external RC network connected to the output of the error amplifier. A voltage feedforward control has been added to the oscillator, this maintains superior line regulation over a wide input voltage range. Closing the loop directly gives an output vol-tage of 5.1V, higher voltages are obtained by inserting a voltage divider.

At turn on, output overcurrents are prevented by the soft start function (fig. 5). The error amplifier is initially clamped by an external capacitor, Css, and allowed to rise linearly under the charge of an internal constant current source.

Output overload protection is provided by a current limit circuit. The load current is sensed by a internal metal resistor connected to a comparator. When the load current exceeds a preset threshold, the output of the comparator sets a flip flop which turns off the power DMOS. The next clock pulse, from an internal 40kHz oscillator, will reset the flip flop and the power DMOS will again conduct. This current protection method, ensures a constant current output when the system is overloaded or short circuited and limits the switching frequency, in this condition, to 40kHz. The Reset and Power fail diagram (fig. 7), generates an output signal when the supply voltage exceeds a threshold programmed by an external voltage divider. The reset signal, is generated with a delay time programmed by a external capacitor on the delay pin. When the supply voltage falls below the threshold or the output voltage goes below 5V, the reset output goes low immediately. The reset output is an open drain.

Fig. 7A shows the case when the supply voltage is higher than the threshold, but the output voltage is not yet 5V.

Fig. 7B shows the case when the output is 5.1V, but the supply voltage is not yet higher than the fixed threshold. The thermal protection disables circuit operation when the junction temperature reaches about 150°C and has a hysterysis to prevent unstable conditions.

Figure 4. Feedforward Waveform.

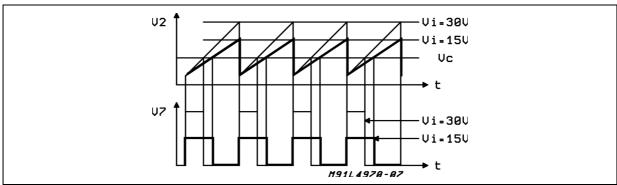


Figure 5. Soft Start Function.

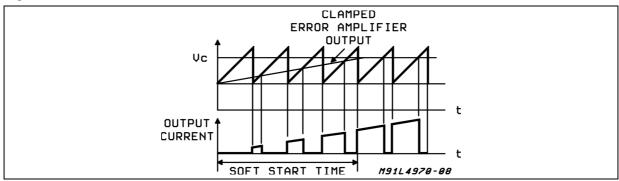


Figure 6. Limiting Current Function.

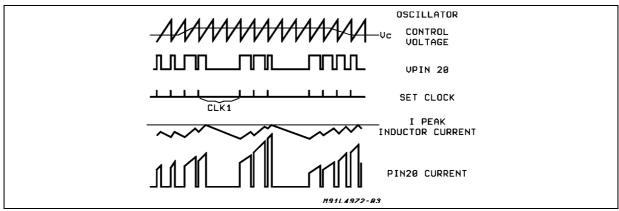
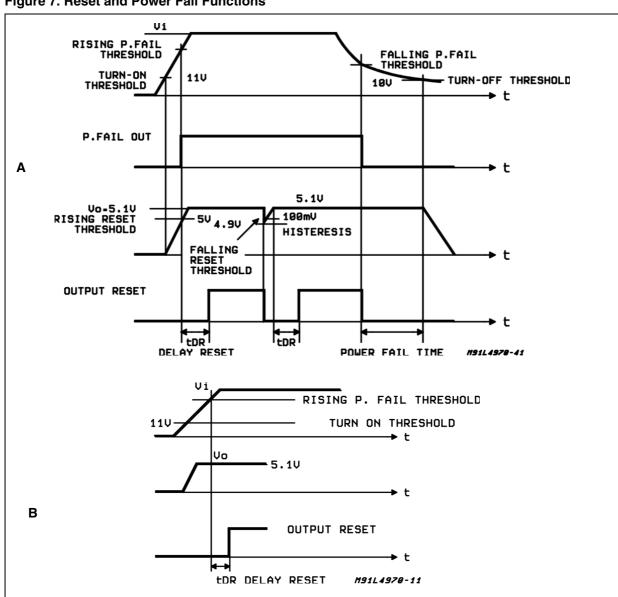



Figure 7. Reset and Power Fail Functions

4 Electrical Characteristcs

Table 5. Electrical Characteristcs

Refer to the test circuit, $T_J = 25^{\circ}C$, $V_i = 35V$, $R4 = 30K\Omega$, C9 = 2.7nF, $f_{SW} = 100KHz$ typ, unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	Fig.
DYNAMIC	CHARACTERISTICS			•	•		*
Vi	Input Volt. Range (pin 11)	$V_0 = V_{ref}$ to 40V $I_0 = 2A$ (**)	15		50	V	8
Vo	Output Voltage	$V_i = 15V$ to 50V $I_0 = 1A$; $V_0 = V_{ref}$	5	5.1	5.2	V	8
ΔVo	Line Regulation	V _i =15V to 50V I _o = 0.5A; V _o = V _{ref}		12	30	mV	
ΔVo	Load Regulation	$V_0 = V_{ref} I_0 = 0.5A$ to 2A		7	20	mV	
V _d	Dropout Voltage between Pin 11 and 20	I ₀ = 2A		0.25	0.4	V	
I _{20L}	Max Limiting Current	$V_i = 15V$ to 50V $V_o = V$ ref to 40V	2.5	2.8	3.5	Α	
η	Efficiency (*)	$\begin{split} I_{o} &= 2A, f = 100 \text{KHz} \\ V_{o} &= V_{ref} \\ V_{o} &= 12 \text{V} \end{split}$	75	85 90		% %	
SVR	Supply Voltage Ripple Rejection	$V_i = 2V_{RMS}$; $I_o = 1A$ f = 100Hz; $V_o = V_{ref}$	56	60		dB	8
f	Switching Frequency		90	100	110	KHz	8
Δf/ΔVi	Voltage Stability of Switching Frequency	V _i = 15V to 45V		2	6	%	8
Δf/T _j	Temperature Stability of Switching Frequency	T _j = 0 to 125°C		1		%	8
f _{max}	Maximum Operating Switching Frequency	$V_0 = V_{ref} R_4 = 15K\Omega$ $I_0 = 2A C9 = 2.2nF$	200			KHz	8

^(*) Only for DIP version (**) Pulse testing with a low duty cycle

Vref SEC	Vref SECTION (pin 13)							
V ₁₃	Reference Voltage		5	5.1	5.2	V	10	
ΔV ₁₃	Line Regulation	V _i = 15V to 50V		10	25	mV	10	
ΔV ₁₃	Load Regulation	I ₁₃ = 0 to 1mA		20	40	mV	10	
$\Delta V_{13} / \Delta T$	Average Temperature Coefficient Reference Voltage	$T_j = 0$ °C to 125°C		0.4		mV/°C	10	
I _{13 short}	Short Circuit Current Limit	$V_{13} = 0$		70		mA	10	
V _{START} S	ECTION (pin 15)							
V ₁₄	Reference Voltage		11.4	12	12.6	V	10	
ΔV ₁₄	Line Regulation	V _i = 15 to 50V		0.6	1.4	V	10	
ΔV ₁₄	Load Regulation	I ₁₄ = 0 to 1mA		50	200	mV	10	
I _{14 short}	Short Circuit Current Limit	$V_{15} = 0V$		80		mA	10	
DC CHAP	RACTERISTICS	•		•				
V _{11on}	Turn-on Threshold		10	11	12	V	12	
V _{11 Hyst}	Turn-off Hysteresys			1		V	12	
I _{11Q}	Quiescent Current	V ₈ = 0; S1 = D		13	19	mA	12	
I _{110Q}	Operating Supply Current	V ₈ = 0; S1 = B; S2 = B		16	23	mA	12	

Table 5. Electrical Characteristcs (continued)

Refer to the test circuit, $T_J = 25^{\circ}C$, $V_i = 35V$, $R4 = 30K\Omega$, C9 = 2.7nF, $f_{SW} = 100KHz$ typ, unless otherwise specified.

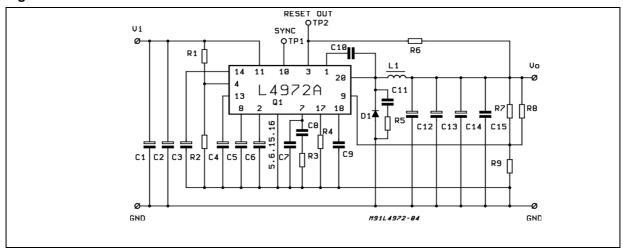

SOFT START (pin 8) Is	Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	Fig.
Is Soft Start Source Current V8 = 3V; V9 = 0V 80	I _{20L}	Out Leak Current	$V_i = 55V$; S3 = A; $V_8 = 0$			2	mA	12
V ₈ Output Saturation Voltage I ₈ = 20mA, V ₁₁ = 10V I ₉ = 200µA; V ₁₁ = 10V I ₁₀ I ₁₀	SOFT STA	ART (pin 8)						
Ig= 200μA; V ₁₁ = 10V 0.7 V 13	I ₈	Soft Start Source Current	$V_8 = 3V; V_9 = 0V$	80	115	150	μΑ	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V ₈	Output Saturation Voltage	1 -					13 13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ERROR A	MPLIFIER						
	V _{7H}	High Level Out Voltage	$I_7 = 100 \mu A$; $S1 = C$; $V_9 = 4.7 V$	6			V	14
	V ₇ L	Low Level Out Voltage	$I_7 = 100 \mu A$; $S1 = C$; $V_9 = 5.3 V$			1.2	V	14
Input Bias Current S1 = B; R _S = 10KΩ 0.4 3 μA 14 G _V DC Open Loop Gain S1 = A; R _S = 10Ω 60 dB 14 SVR Supply Voltage Rejection 15 < V ₁ < 50V 60 80 dB 14 V _{OS} Input Offset Voltage R _S = 50Ω S1 = A 2 10 mV 14 RAMP GENERATOR (pin 18) V ₁₈ Ramp Valley S1 = B; S2 = B 1.2 1.5 V 12 V ₁₈ Ramp Peak S1 = B; S2 = B V ₁ = 15V V ₂ = 45 V ₃ 12 I ₁₈ Min. Ramp Current S1 = A; I ₁₇ = 100μA 2.7 300 μA 12 I ₁₈ Max. Ramp Current S1 = A; I ₁₇ = 100μA 2.7 mA 12 SYNC FUNCTION (pin 10) V ₁₀ Low Input Voltage V ₁ = 15V to 50V; V ₈ = 0; S1 = B; S2 = B S4 = B 2.5 5.5 V 12 I _{10L} Sync Input Current with Low Input Voltage V ₁ = 0; S1 = B; S2 = B; S4 = B 1.2 1.5 MA 12 I _{10H} Input Current with High Input Voltage V ₁ = 2.5V I _{10H} Input Voltage S1 = B; S2 = B; S4 = B I _{10H} Input Voltage S1 = B; S2 = B S1 = B; S2 = B I _{10H} Input Voltage V ₁₀ = 2.5V I _{10H} Input Voltage V ₁₀ = 3.3V V ₁₀ V ₁₀ = 0.80 MV V ₁₀ V ₁₀ = 0.9V; S1 = 0.9V; S2 = 0.9V; S2 = 0.9V; S3 = 0.	I _{7H}	Source Output Current	$V_7 = 1V; V_7 = 4.7V$	100	150		μΑ	14
	-I _{7L}	Sink Output Current	$V_7 = 6V; V_9 = 5.3V$	100	150		μΑ	14
SVR Supply Voltage Rejection $15 < V_1 < 50V$ 60 80 dB 14 VOS Input Offset Voltage R _S = 50Ω S1 = A 2 10 mV 14 RAMP GENERATOR (pin 18) V18 Ramp Valley S1 = B; S2 = B 1.2 1.5 V 12 V18 Ramp Peak S1 = B; S2 = B 1.2 1.5 V 12 V18 Ramp Peak S1 = B; S2 = B 1.2 1.5 V 12 V18 Ramp Peak S1 = B; S2 = B 2.5 V 12 I 18 Min. Ramp Current S1 = A; I ₁₇ = 100µA 2.5 V 12 I 18 Max. Ramp Current S1 = A; I ₁₇ = 1mA 2.4 2.7 mA 12 SYNC FUNCTION (pin 10) VI 15V to 50V; V ₈ = 0; S1 = B; S2 = B; S4 = B 0.9 V 12 SYNC FUNCTION (pin 10) V ₁ = 15V to 50V; V ₈ = 0; S1 = B; S2 = B; S4 = B 2.5 5.5 V 12 I 10L Uight Input Voltage V ₈ = 0; S1 = B; S2 = B; S4 = B	l ₉	Input Bias Current	S1 = B; $R_S = 10K\Omega$		0.4	3	μΑ	14
Nos	G _V	DC Open Loop Gain	S1 = A; R_S = 10Ω	60			dB	14
RAMP GENERATOR (pin 18) V18	SVR	Supply Voltage Rejection	15 < V _i < 50V	60	80		dB	14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vos	Input Offset Voltage	$R_S = 50\Omega S1 = A$		2	10	mV	14
No	RAMP GE	NERATOR (pin 18)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V ₁₈	Ramp Valley	S1 = B; S2 = B	1.2	1.5		V	12
Name	V ₁₈	Ramp Peak	$V_i = 15V$					12 12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I ₁₈	Min. Ramp Current	S1 = A; I ₁₇ = 100μA		270	300	μΑ	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I ₁₈	Max. Ramp Current	S1 = A; I ₁₇ = 1mA	2.4	2.7		mA	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SYNC FU	NCTION (pin 10)				I.	I.	
I10L Sync Input Current with Low Input Voltage V10= V18= 0.9V; S4 = B; S1 = B; S2 = B 0.4 mA 12 I10H Input Current with High Input Voltage V10= 2.5V 1.5 mA 12 V10 Output Amplitude 4 5 V - tw Output Pulse Width Vthr = 2.5V 0.3 0.5 0.8 μs - RESET AND POWER FAIL FUNCTIONS V9R Rising Thereshold Voltage (pin 9) V1 = 15 to 50V V4 = 5.3V V10 - 100 V10 V10 V10 V10 V10 V10 V10 V10 V10	V ₁₀	Low Input Voltage	'	-0.3		0.9	V	12
Input Voltage S1 = B; S2 = B	V ₁₀	High Input voltage	V ₈ = 0; S1 = B; S2 = B; S4 = B	2.5		5.5	V	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{10L}					0.4	mA	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{10H}		V ₁₀ = 2.5V			1.5	mA	12
RESET AND POWER FAIL FUNCTIONS V_{9R} Rising Thereshold Voltage (pin 9) $V_i = 15 \text{ to } 50 \text{V}$	V ₁₀	Output Amplitude		4	5		V	_
V _{9R} Rising Thereshold Voltage (pin 9) V _i = 15 to 50V V ₄ = 5.3V V _{ref} -130 V _{ref} -100 V _{ref} -80 V mV 15 m V _{9F} Falling Thereshold Voltage (pin 9) V _i = 15 to 50V V ₄ = 5.3V 4.77 V _{ref} -200 V _{ref} -160 V mV 15 m V _{2H} Delay High Threshold Volt. V _i = 15 to 50V V ₄ = 5.3V; V ₉ = V ₁₃ 4.95 5.1 5.25 V 15 m V _{2L} Delay Low Threshold Volt. V _i = 15 to 50V; V ₄ = 4.7V; V ₉ = V ₁₃ 1 1.1 1.2 V 15 m I _{2SO} Delay Source Current V ₄ = 5.3V; V ₂ = 3V 30 60 80 μA 15 m I _{2SI} Delay Source Sink Current V ₄ = 4.7V; V ₂ = 3V 10 mA 15 m V _{3S} Output Saturation Voltage I ₃ = 15mA; S1 = B V ₄ = 4.7V 0.4 V 15	t _W	Output Pulse Width	$V_{thr} = 2.5V$	0.3	0.5	0.8	μS	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RESET A	ND POWER FAIL FUNCTIONS						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{9R}	Rising Thereshold Voltage (pin 9)						15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{9F}	Falling Thereshold Voltage (pin 9)		4.77				15
I2SODelay Source Current $V_4 = 5.3V$; $V_2 = 3V$ 306080μA15I2SIDelay Source Sink Current $V_4 = 4.7V$; $V_2 = 3V$ 10mA15 V_{3S} Output Saturation Voltage $I_3 = 15$ mA; $S1 = B$ $V_4 = 4.7V$ 0.4 V 15	V _{2H}	Delay High Threshold Volt.		4.95	5.1	5.25	V	15
I_{2SI} Delay Source Sink Current $V_4 = 4.7V$; $V_2 = 3V$ 10mA15 V_{3S} Output Saturation Voltage $I_3 = 15$ mA; $S1 = B$ $V_4 = 4.7V$ 0.4V15	V _{2L}	Delay Low Threshold Volt.	$V_i = 15 \text{ to } 50V; V_4 = 4.7V; V_9 = V_{13}$	1	1.1	1.2	V	15
V_{3S} Output Saturation Voltage $I_3 = 15$ mA; $S1 = B V_4 = 4.7V$ 0.4 V 15	I ₂₈₀	Delay Source Current	$V_4 = 5.3V; V_2 = 3V$	30	60	80	μΑ	15
	I _{2SI}	Delay Source Sink Current	$V_4 = 4.7V; V_2 = 3V$	10			mA	15
I ₃ Output Leak Current V ₃ = 50V; S1 = A 100 μA 15	V _{3S}	Output Saturation Voltage	I ₃ = 15mA; S1 = B V ₄ = 4.7V			0.4	V	15
	I ₃	Output Leak Current	V ₃ = 50V; S1 = A			100	μА	15

Table 5. Electrical Characteristcs (continued)

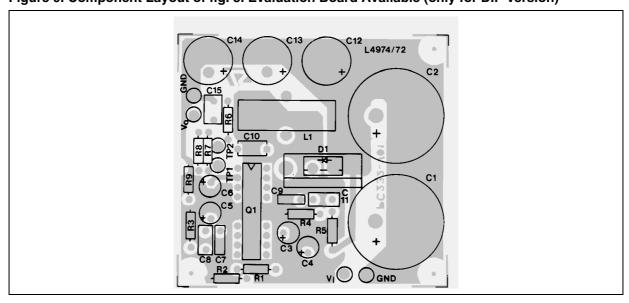
Refer to the test circuit, $T_J = 25^{\circ}C$, $V_i = 35V$, $R4 = 30K\Omega$, C9 = 2.7nF, $f_{SW} = 100KHz$ typ, unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	Fig.
V_{4R}	Rising Threshold Voltage	$V_9 = V_{13}$	4.95	5.1	5.25	V	15
V ₄ H	Hysteresis		0.4	0.5	0.6	V	15
I ₄	Input Bias Current			1	3	μΑ	15

Figure 8.

TYPICAL PERFORMANCES (using evaluation board):

n=83% ($V_i=35V$; $V_o=V_{REF}$; $I_o=2A$; $f_{sw}=100KHz$)


 $V_{o RIPPLE} = 30mV$ (at 1A)

Line regulation = 12mV ($V_i = 15$ to 50V)

Load regulation = $7mV (I_0 = 0.5 \text{ to } 2A)$

for component values Refer to the fig. 8 (Part list).

Figure 9. Component Layout of fig. 8. Evaluation Board Available (only for DIP version)

PART LIST

 $R1 = 30K\Omega$

 $R2 = 10K\Omega$

 $R3 = 15K\Omega$

 $R4 = 30K\Omega$

 $R5 = 22\Omega$

 $R6 = 4.7K\Omega$

R7 = see table 6

R8 = OPTION

 $R9 = 4.7K\Omega$

* C1 = C2 = 1000mF 63V EYF (ROE)

 $C3 = C4 = C5 = C6 = 2,2\mu F 50V$

C7 = 390pF Film

C8 = 22nF MKT 1837 (ERO)

C9 = 2.7nF KP 1830 (ERO)

 $C10 = 0.33 \mu F$ Film

C11 = 1nF

** $C12 = C13 = C14 = 100 \mu F 40V EKR (ROE)$

 $C15 = 1\mu F Film$

D1 = STPS5L60

 $L1 = 150 \mu H$

core 58310 MAGNETICS

45 TURNS 0.91mm (AWG 19)

COGEMA 949181

Table 6.

V ₀	R9	R ₇
12V	4.7kΩ	6.2kΩ
15V	4.7kΩ	9.1kΩ
18V	4.7kΩ	12Ω
24V	4.7kΩ	18Ω

In the Test and Application Circuit for L4972D are not mounted C2, C14 and R8.

Table 7. Suggested Boostrap Capacitors

Operating Frequency	Boostrap Cap.c10
f = 20KHz	≥680nF
f = 50KHz	≥470nF
f = 100KHz	≥330nF
f = 200KHz	≥220nF
f = 500KHz	≥100nF

^{* 2} capacitors in parallel to increase input RMS current capability.
* * 3 capacitors in parallel to reduce total output ESR.

Figure 10. P.C. Board and Component Layout of the Circuit of Fig. 8.

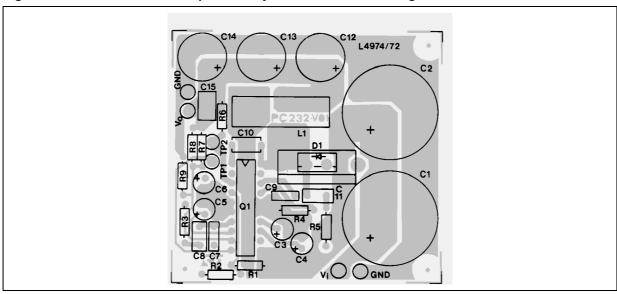


Figure 11. DC Test Circuits

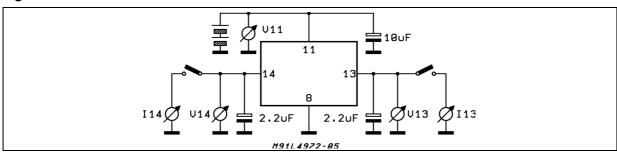


Figure 12.

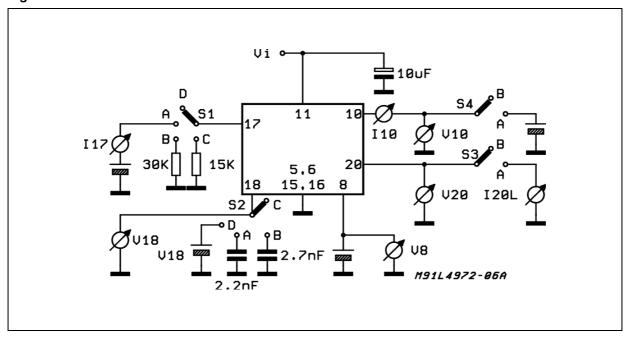


Figure 13.

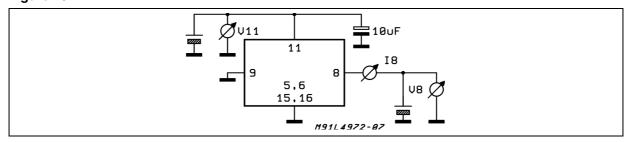


Figure 14.

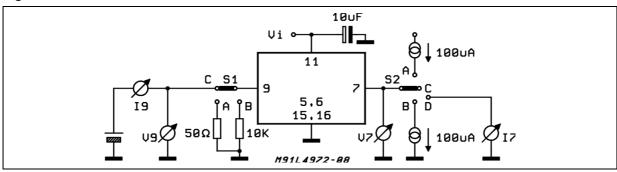


Figure 15.

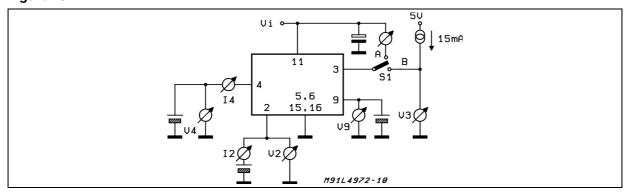


Figure 16. Quiescent Drain Current vs. Supply Voltage (0% duty cycle - see fig. 12).

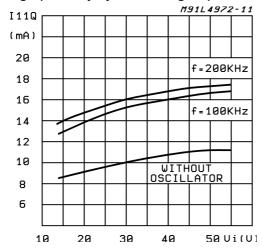


Figure 17. Quiescent Drain Current vs. Junction Temperature (0% duty cycle).

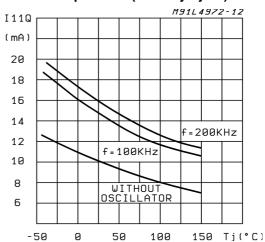


Figure 18. Quiescent Drain Current vs. Duty Cycle.

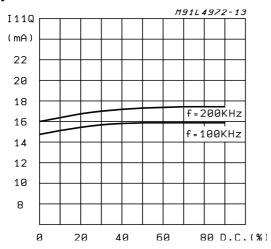


Figure 19. Reference Voltage (pin 13) vs. Vi (see fig. 11).

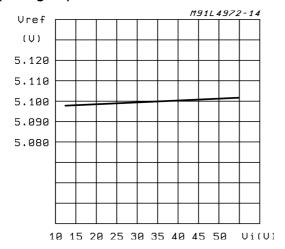


Figure 20. Reference Voltage (pin 13) vs. Junction Temperature (see fig. 11).

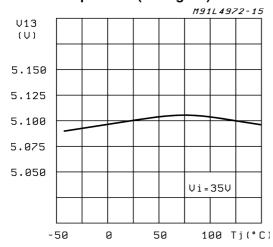


Figure 21. Reference Voltage (pin 14) vs. Vi (see fig. 11).

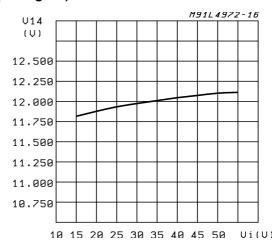


Figure 22. Reference Voltage (pin 14) vs. Junction Temperature (see fig. 11).

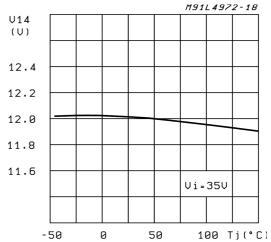


Figure 23. : Ref. Voltage 5.1V (pin 13) Supply Voltage Ripple Rejection vs. Frequency

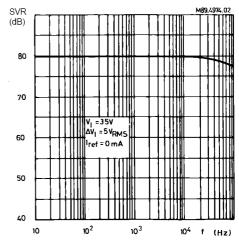


Figure 24. Switching Frequency vs. Input Voltage (see fig. 8).

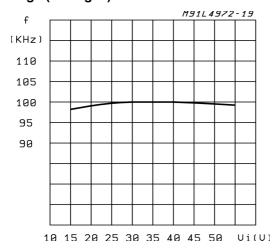


Figure 25. Switching Frequency vs. Junction Temperature (see fig. 8).

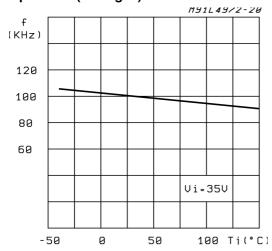


Figure 26. Switching Frequency vs. R4 (see fig.8).

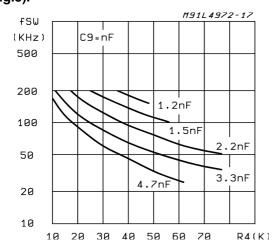


Figure 27. Maximum Duty Cycle vs. Frequency.

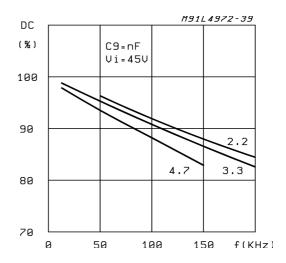


Figure 28. Supply Voltage Ripple Rejection vs. Frequency (see fig. 8).

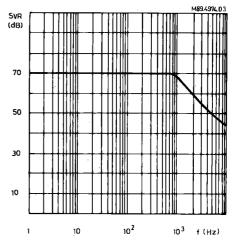


Figure 29. Efficiency vs. Output Voltage.

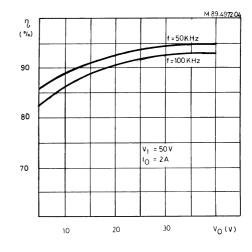


Figure 30. Line Transient Response (see fig. 8).

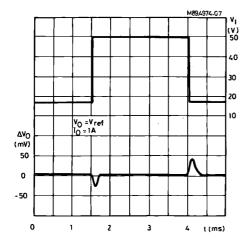


Figure 31. Line Transient Response (see fig. 8).

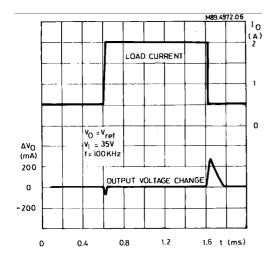


Figure 32. Dropout Voltage between Pin 11 and Pin 20 vs. Current at Pin 20.

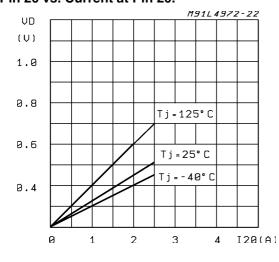


Figure 33. .Dropout Voltage between Pin 11 and Pin 20 vs. Junction Temperature.

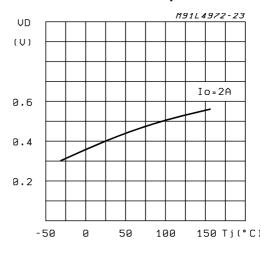


Figure 34. Power Dissipation (device only) vs. Input Voltage.

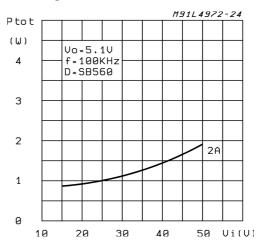


Figure 35. Power Dissipation (device only) vs. Input Voltage.

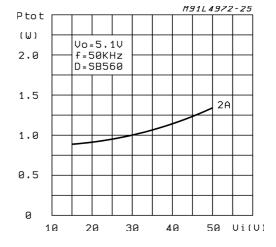


Figure 36. Power Dissipation (device only) vs. Output Voltage.

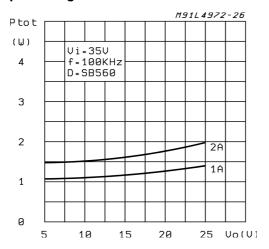


Figure 37. Power Dissipation (device only) vs. Output Voltage

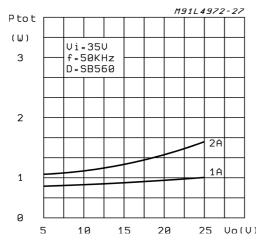


Figure 38. Power Dissipation (device only) vs. Output Current

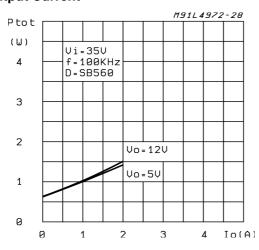


Figure 39. Power Dissipation (device only) vs. Output Current

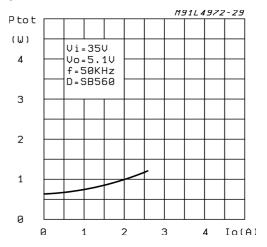


Figure 40. Efficiency vs. Output Current.

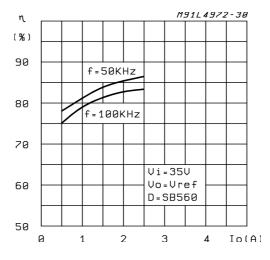
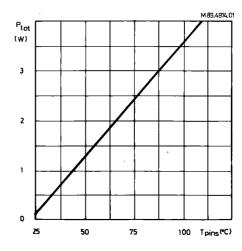



Figure 41. Test PCB Thermal Characteristic.

477

Figure 42. Rth j-amb vs. Area on Board Heatsink (DIP 16+2+2)

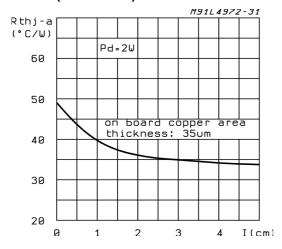


Figure 43. Rth j-amb vs. Area on Board Heatsink (SO20)

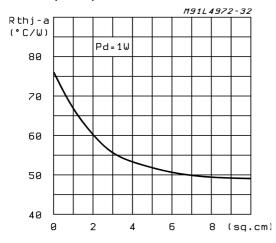


Figure 44. Maximum Allowable Power Dissipation vs. T_{amb} (Powerdip)

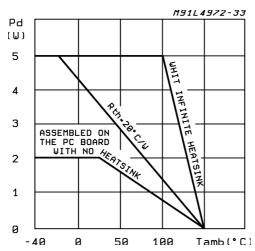


Figure 45. Maximum Allowable Power Dissipation vs. Ambient Temperature (SO20)

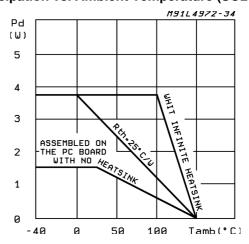


Figure 46. Open Loop Frequency and Phase of Error Amplifier (see fig. 14).

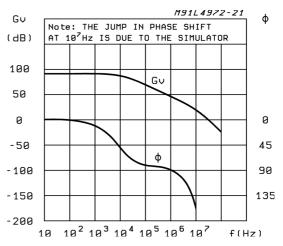


Figure 47. 2A - 5.1V Low Cost Application Circuit.

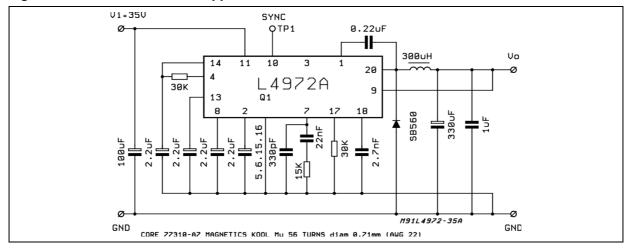


Figure 48. A 5.1V/12V Multiple Supply. Note the Synchronization between the L4972A and L4970A.

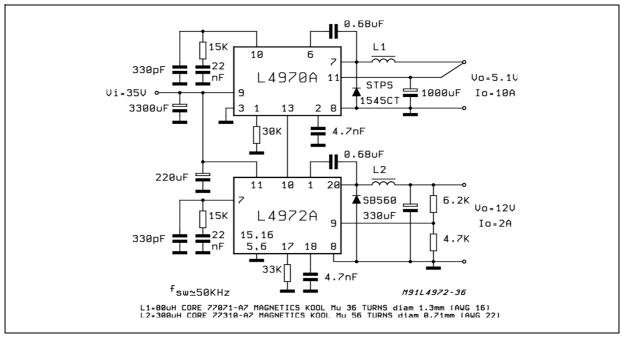
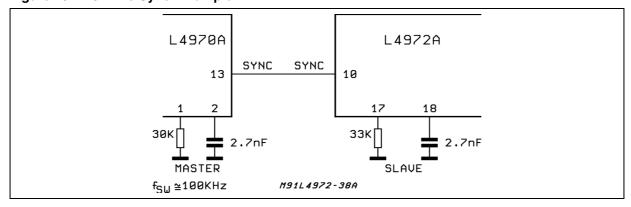



Figure 49. L4972A's Sync. Example.

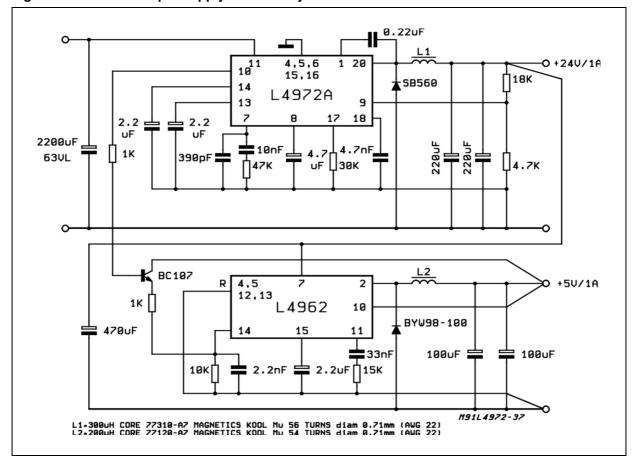
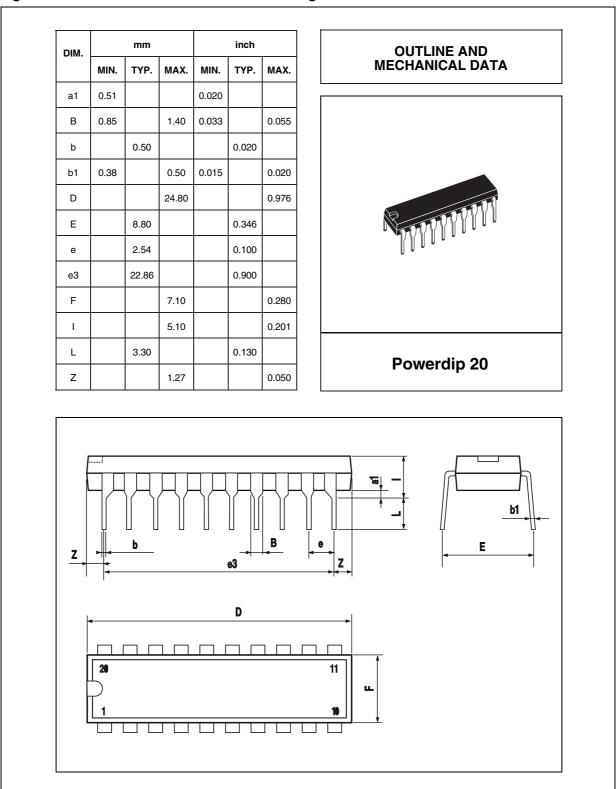
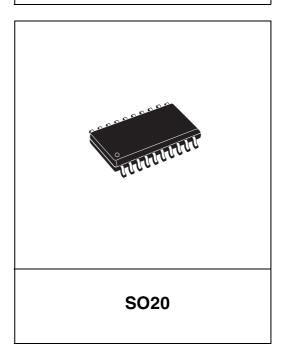
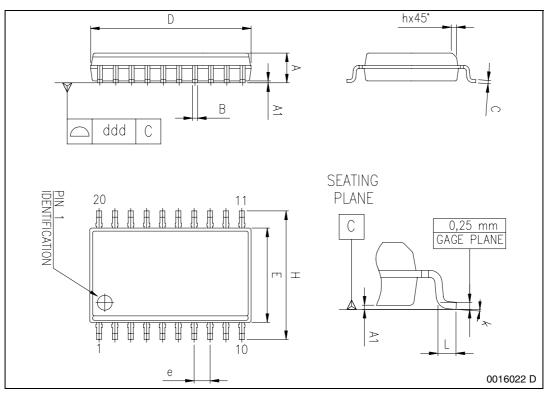


Figure 50. 1A/24V Multiple Supply. Note the synchronization between the L4972A and L4962

5 Package Information

Figure 51. PowerDIP20 Mechanical Data & Package Dimensions


Figure 52. SO20 Mechanical Data & Package Dimensions

DIM.		mm			inch	
DIW.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	2.35		2.65	0.093		0.104
A1	0.10		0.30	0.004		0.012
В	0.33		0.51	0.013		0.200
С	0.23		0.32	0.009		0.013
D (1)	12.60		13.00	0.496		0.512
Е	7.40		7.60	0.291		0.299
е		1.27			0.050	
Н	10.0		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.40		1.27	0.016		0.050
k	0° (min.), 8° (max.)					
ddd			0.10			0.004

^{(1) &}quot;D" dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15mm per side.

OUTLINE AND MECHANICAL DATA

6 Revision History

Table 8. Revision History

Date	Revision	Description of Changes
June 2000	2	First Issue
May 2005	3	Modified look & feel layout. Changed the name of D1 in the Part list to page 9/22.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com