


TRUTH TABLE

Mode	WE	CE	ŌĒ	I/O Operation	VDD Current
Not Selected (Power-down)	Х	Н	Х	High-Z	Isb1, Isb2
Output Disabled	Н	L	Н	High-Z	Icc
Read	Н	L	L	D оит	Icc
Write	L	L	Χ	Din	Icc

PIN CONFIGURATION 28-Pin SOJ

PIN CONFIGURATION 28-Pin TSOP (Type 1)

PIN DESCRIPTIONS

A0-A12	Address Inputs	
CE	Chip Enable 1 Input	
ŌĒ	Output Enable Input	
WE	Write Enable Input	
1/00-1/07	Input/Output	
NC	No Connect	
VDD	Power	
GND	Ground	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.5	W
Іоит	DC Output Current (LOW)	20	mA

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Speed	$\mathbf{V}_{DD^{(1)}}$	
Commercial	0°C to +70°C	-10	5V ± 5%	
Industrial	–40°C to +85°C	-10	5V ± 5%	

Note

1. If operated at 12ns, VDD range is $5V \pm 10\%$.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	V _{DD} = Min., Iон = -4.0 mA		2.4	_	V
Vol	Output LOW Voltage	V _{DD} = Min., I _{OL} = 8.0 mA		_	0.4	V
VIH	Input HIGH Voltage			2.2	V _{DD} + 0.5	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
lu	Input Leakage	$GND \leq Vin \leq Vdd$	Com.	-1	1	μA
			Ind.	-2	2	
ILO	Output Leakage	GND ≤ Vout ≤ Vdd,	Com.	-1	1	μΑ
		Outputs Disabled	Ind.	-2	2	

Note

1. $V_{IL} = -3.0V$ for pulse width less than 10 ns.

01/13/2020

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-10	-12	
Symbol	Parameter	Test Conditions		Min. Max.	Min. Max.	Unit
loc1	Vob Operating Supply Current	$V_{DD} = Max., \overline{CE} = V_{IL}$ $I_{OUT} = 0 \text{ mA}, f = 0$	Com. Ind.	— 20 — 25	— 20 — 25	mA
lcc2	VDD Dynamic Operating Supply Current	VDD=Max., \overline{CE} =VIL IOUT=0 mA, f=fMAX	Com. Ind. typ. ⁽²⁾	— 45 — 50 25	— 35 — 45 25	mA
ISB1	TTL Standby Current (TTL Inputs)	VDD=Max., VIN=VIHOTVIL CE≥VIH, f=0	Com. Ind.	— 1 — 2	— 1 — 2	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:decomposition} \begin{split} & \frac{\text{VDD}=\text{Max.,}}{\text{CE}} \geq \text{VDD}-0.2\text{V,}\\ & \text{Vin} \geq \text{VDD}-0.2\text{V, or}\\ & \text{Vin} \leq 0.2\text{V, f} = 0 \end{split}$	Com. Ind. typ. ⁽²⁾	— 350 — 450 200	— 350 — 450 200	μA

Note:

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	8	pF
Соит	Output Capacitance	Vout = 0V	10	pF

Notes

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 5.0V$.

^{1.} At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{2.} Typical values are measured at VDD = 5V, TA = 25°C. Not 100% tested.

READ CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)

Symbol	Parameter	-10 i Min.	ns Max		2 ns Max.	Unit
t rc	Read Cycle Time	10	_	12	_	ns
taa	Address Access Time	_	10	_	12	ns
tона	Output Hold Time	2	_	2	_	ns
tacs	CE Access Time	_	10	_	12	ns
t DOE	OE Access Time	_	6	_	6	ns
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	0	_	ns
t HZOE ⁽²⁾	OE to High-Z Output	_	5	_	6	ns
tLZCS ⁽²⁾	CE to Low-Z Output	2	_	3	_	ns
thzcs ⁽²⁾	CE to High-Z Output	_	5	_	7	ns
t PU ⁽³⁾	CE to Power-Up	0	_	0	_	ns
t PD ⁽³⁾	CE to Power-Down	_	10	_	12	ns

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Levels	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS

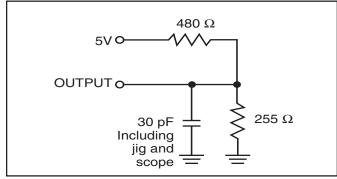
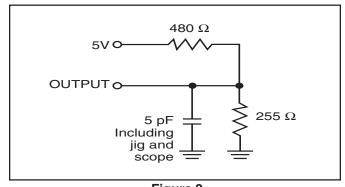
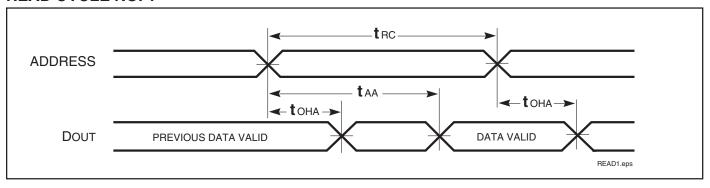
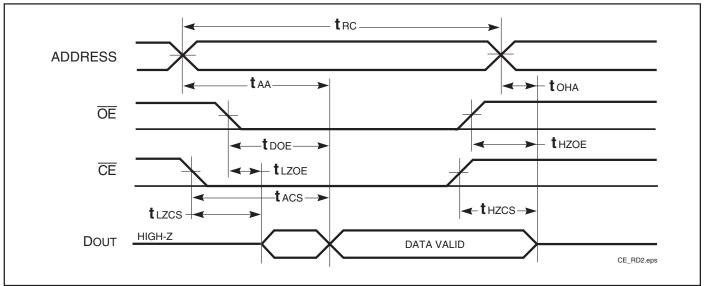


Figure 1

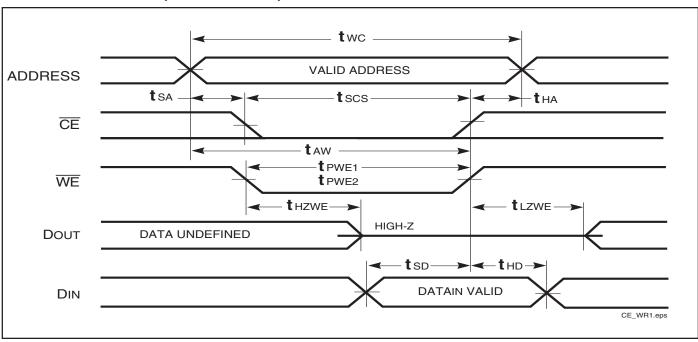

Figure 2

AC WAVEFORMS READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2^(1,3)

Notes:

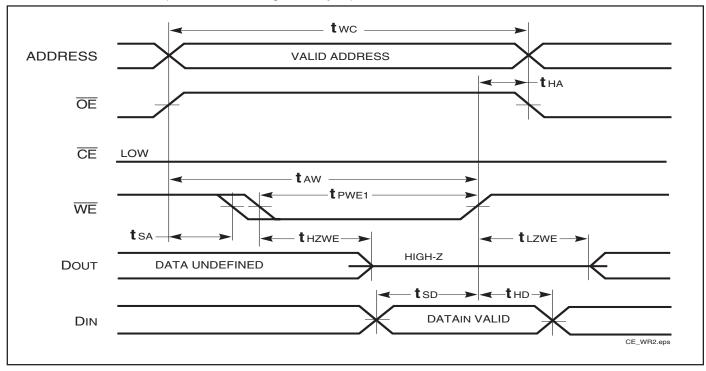
- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\textbf{CE}}$ LOW transitions.

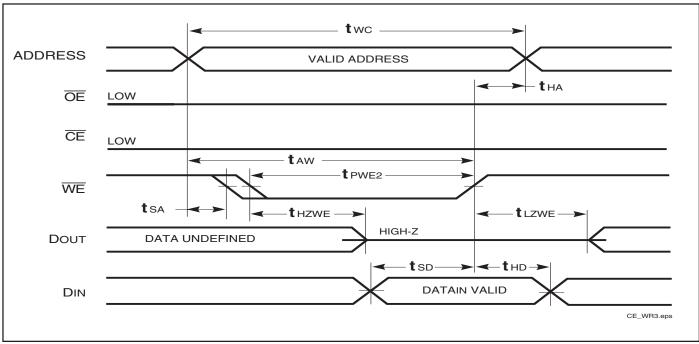

WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

		-10r	ıs	-12 ns		
Symbol	Parameter	Min.	Max	Min. Ma	ax. Unit	
twc	Write Cycle Time	10		12 -	– ns	
tscs	CE to Write End	9	_	10 –	– ns	
taw	Address Setup Time to Write End	9	_	10 –	– ns	
tha	Address Hold from Write End	0	_	0 -	– ns	
t sa	Address Setup Time	0	_	0 -	– ns	
tpwe1	WE Pulse Width (OE LOW)	9	_	9 –	– ns	
tpwe2	WE Pulse Width (OE HIGH)	8	_	8 –	– ns	
t sD	Data Setup to Write End	7	_	7 -	– ns	
t HD	Data Hold from Write End	0	_	0 -	– ns	
thzwe ⁽²⁾	WE LOW to High-Z Output	_	6	_ (6 ns	
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	0	_	0 -	– ns	

Notes:

- 1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. The internal write time is defined by the overlap of $\overline{\textbf{CE}}$ LOW and $\overline{\textbf{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.


AC WAVEFORMS WRITE CYCLE NO. 1 (WE Controlled)(1,2)


01/13/2020

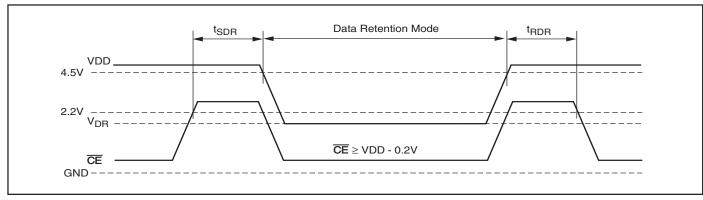
WRITE CYCLE NO. 2 (OE is HIGH During Write Cycle) (1,2)

WRITE CYCLE NO. 3 (OE is LOW During Write Cycle) (1)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.

Downloaded from **Arrow.com**.

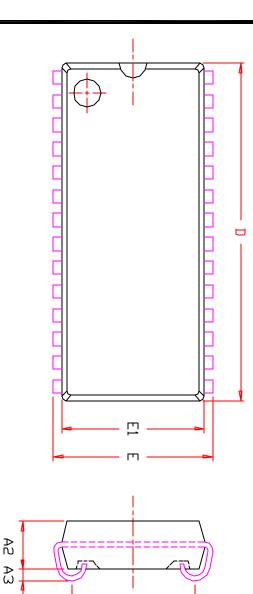


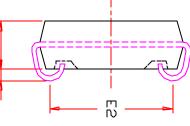
DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Min.	Typ. ⁽¹⁾	Max.	Unit
VDR	Voo for Data Retention	See Data Retention Waveform		2.0		5.5	V
ldr	Data Retention Current	$\begin{aligned} & V_{DD}\!=\!2.0V, \overline{\textbf{CE}}\!\geq\!V_{DD}\!-\!0.2V\\ & V_{IN}\!\geq\!V_{DD}\!-\!0.2V, \text{ or } V_{IN}\!\leq\!V_{SS}+0.2V \end{aligned}$	Com. Ind.	_	50	90 100	μA
tsdr	Data Retention Setup Time	See Data Retention Waveform		0		_	ns
t RDR	RecoveryTime	See Data Retention Waveform		trc		_	ns

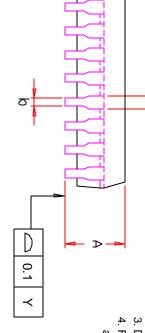
Note:

DATA RETENTION WAVEFORM (CE Controlled)


^{1.} Typical Values are measured at $V_{DD} = 5V$, $T_A = 25$ °C and not 100% tested.



ORDERING INFORMATION

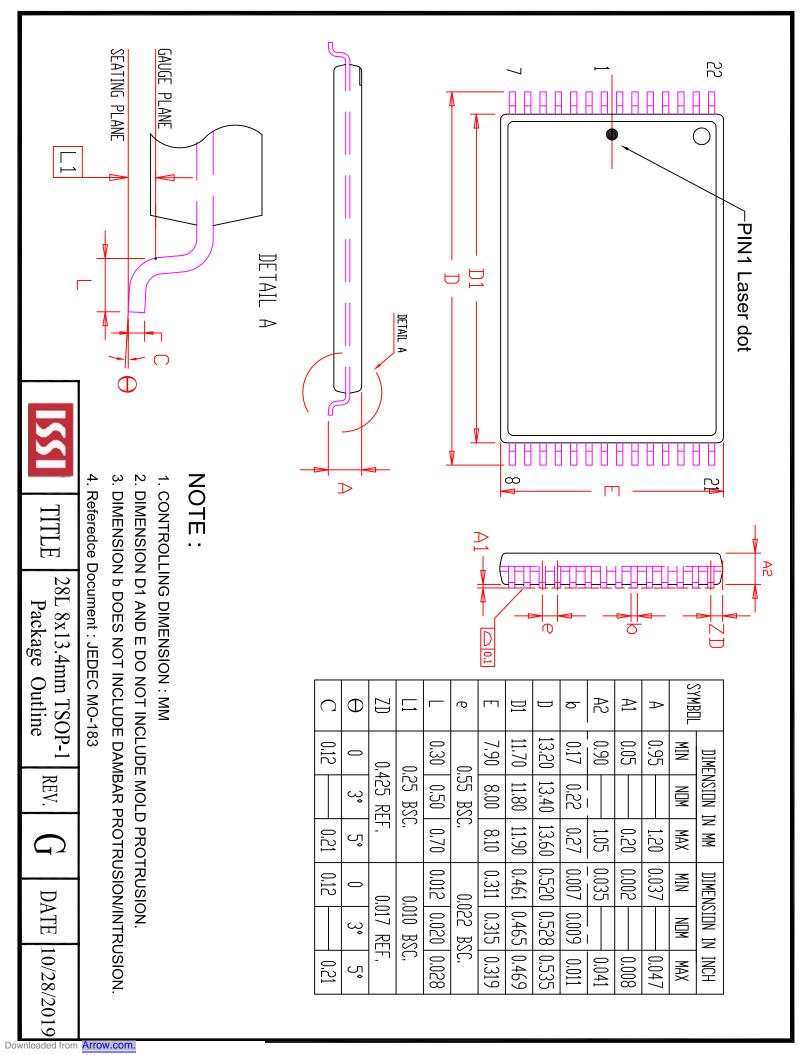

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package
10	IS61C64AL-10JLI IS61C64AL-10TLI	300-mil Plastic SOJ, Lead-free Plastic TSOP, Lead-free

~	ZD	Φ	ES		Ш	D	5 8	ਠ	A3	A2	⊅	SYMBOL	
0,1	0.95 REF.	1.27 BSC	6,22	7.42	8,26	17,70	0,66	0,36	0.64	2,41	3,05	MIN.	DIME
					8,56					2,54		N	DIMENSION I
			7,29	7.75	8,81	18,54	0.81	0,56	1.09	2,67	3,76	MAX.	Z

NOTE:

1. Controlling dimension: mm


2

- 2. Dimension D1 adn E do not include mold protrusion .
- 3. Dimension b2 does not include dambar protrusion/intrusion.
- 4. Formed leads shall be planar with respect to one another within 0.1mm at the seating plane after final test.

28L 300mil SOJ Package Outline

REV.

DATE 07/05/2006

