

HIGH SPEED (IS61/64C5128AL) PIN CONFIGURATION

36-Pin SOJ (400-mil)

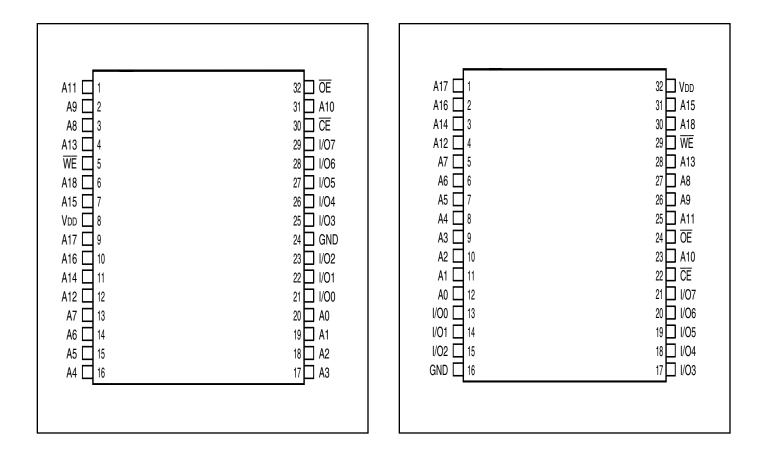
44-Pin TSOP (Type II)

A0		36 🛛 NC
A1	2	35 A18
A2	Ī 3	34 🗖 A17
A3		33 🗍 A16
A4	5	32 A15
CE	6	31 OE
I/O0	7	30 1/07
I/O1	8	29 🗍 1/O6
Vdd	9	28 🗍 GND
GND	10	27 🗍 Vdd
I/O2	[11	26 🗍 1/O5
I/O3	12	25 🔲 I/O4
WE	13	24 🗋 A14
A5	14	23 🗋 A13
A6	15	22 🛛 A12
A7	16	21 🛛 A11
A8	[17	20 🛛 A10
A9	18	19 🛛 NC
	L]

	C C 8 8 7 6 6 5 5 7 6 6 5 7 6 6 5 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7 6 7 7 7 7 7 6 7 7 7 6 7
--	--

PIN DESCRIPTIONS

A0-A18	Address Inputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Bidirectional Ports
VDD	Power
GND	Ground
NC	No Connection


IS61C5128AL/AS IS64C5128AL/AS

LOW POWER (IS61/64C5128AS) PIN CONFIGURATION

32-pin sTSOP (TYPE I)

32-pin SOP 32-pin TSOP (TYPE II)

PIN DESCRIPTIONS

A0-A18	Address Inputs
CE	Chip Enable 1 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O	7 Input/Output
Vdd	Power
GND	Ground

TRUTH TABLE

				I/O PIN			
Mode	WE	CE	ŌĒ	I/O0-I/O7	VDD Current		
Not Selected	Х	Н	Х	High-Z	ISB1, ISB2		
Output Disabled	Н	L	Н	High-Z	Icc1, Icc2		
Read	Н	L	L	Dout	Icc1, Icc2		
Write	L	L	Х	DIN	Icc1, Icc2		

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value	Unit	
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V	
Tstg	Storage Temperature	-65 to +150	°C	
Рт	Power Dissipation	1.5	W	
Ιουτ	DC Output Current (LOW)	20	mA	

Notes:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	5	pF
Соит	Output Capacitance	VOUT = 0V	7	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 5.0V$.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vdd = Min., Iон = -4.0 mA		2.4	—	V
Vol	Output LOW Voltage	$V_{DD} = Min., I_{OL} = 8.0 mA$		_	0.4	V
Vін	Input HIGH Voltage			2.2	Vdd + 0.5	V
VIL	Input LOW Voltage ⁽¹⁾			-0.3	0.8	V
LI	Input Leakage	$GND \le V_{IN} \le V_{DD}$	Com.	-1	1	μA
			Ind.	-2	2	-
			Auto.	-5	5	
Ilo	Output Leakage	$GND \le VOUT \le VDD$	Com.	-1	1	μA
		Outputs Disabled	Ind.	-2	2	•
			Auto.	-5	5	

Note: 1. VIL = -3.0V for pulse width less than 10 ns.

OPERATING RANGE: HIGH SPEED OPTION (IS61/64C5128AL)

Range	Ambient Temperature	Vdd	Speed (ns)	
Commercial	0°C to +70°C	5V ± 10%	10	
Industrial	-40°C to +85°C	5V ± 10%	10	
Automotive	-40°C to +125°C	5V ± 10%	12	

OPERATING RANGE: LOW POWER OPTION (IS61/64C5128AS)

Range	Ambient Temperature	Vdd	Speed (ns)	
Commercial	0°C to +70°C	5V ± 10%	25	
Industrial	-40°C to +85°C	5V ± 10%	25	
Automotive	-40°C to +125°C	5V ± 10%	25	

HIGH SPEED OPTION (IS61/64C5128AL)

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		-10 r Min.	ns Max.	-12 n Min.	s Max.	Unit
	VDD Operating	V DD = V DD max., \overline{CE} = V IL	Com.	_	45	_	45	mA
	Supply Current	IOUT = 0 mA, f = 0	Ind.	_	50	_	50	
			Auto.	—	55	—	55	
Icc2	VDD Dynamic Operating	$VDD = VDD MAX., \overline{CE} = VIL$	Com.	_	50	_	45	mA
	Supply Current	IOUT = 0 mA, $f = fMAX$	Ind.	—	55	_	50	
			Auto.	_	70	_	60	
			typ. ⁽²⁾		30		25	
ISB1	TTL Standby Current	Vdd = Vdd max.,	Com.	_	15	_	15	mA
	(TTL Inputs)	VIN = VIH or VIL	Ind.	—	20	_	20	
		$\overline{CE} \ge V_{IH}, f = 0$	Auto.	_	30	—	30	
ISB2	CMOS Standby	VDD = VDD max.,	Com.	_	8	_	8	mA
	Current (CMOS Inputs)	$\overline{CE} \leq V_{DD} - 0.2V$,	Ind.	_	12	_	12	
	· · · /	$V_{IN} \ge V_{DD} - 0.2V$, or	Auto.	_	20	_	20	
		$V_{IN} \leq 0.2V, f = 0$	typ. ⁽²⁾		2			

Note:

1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

2. Typical values are measured at $V_{DD} = 5V$, $T_A = 25\%$ and not 100% tested.

LOW POWER OPTION (IS61/64C5128AS)

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-25	5 ns	
Symbol	Parameter	Test Conditions		Min.	Max.	Unit
lcc	Average operating	$\overline{CE} = VIL, VDD = Max.$	Com.	_	10	mA
	Current	l out= 0 mA, f= 0	Ind.	_	15	
			Auto.	—	20	
lcc1	VDD Dynamic Operating	$V_{DD} = Max., \overline{CE} = V_{IL}$	Com.		25	mA
	Supply Current	IOUT = 0 mA, $f = fMAX$	Ind.	_	30	
			Auto.	_	40	
			typ. ⁽²⁾		15	
ISB1	TTL Standby Current	VDD = Max.,	Com.	_	1	mA
	(TTL Inputs)	$V_{IN} = V_{IH} \text{ or } V_{IL}, \overline{CE} \ge V_{IH},$	Ind.	_	1.5	
		f = 0	Auto.	—	2	
ISB2	CMOS Standby	VDD = Max.,	Com.		0.8	mA
	Current (CMOS Inputs)	$\overline{\text{CE}} \geq \text{V}_{\text{DD}} - 0.2 \text{V},$	Ind.	_	0.9	
		$V_{IN} \ge V_{DD} - 0.2V$,	Auto.	—	2	
		or VIN \leq Vss + 0.2V, $~f$ = 0 $~$	typ.	0	.2	

Note:

1. At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

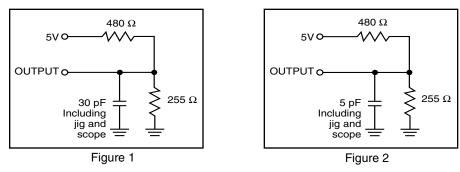
2. Typical values are measured at $V_{DD} = 5V$, TA = 25% and not 100% tested.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-10	-12		-25	
Symbol	Parameter	Min. Max.	Min. M	/lax. Mi	n. Max.	Unit
trc	Read Cycle Time	10 —	12	- 25	5 —	ns
taa	Address Access Time	— 10	—	12 —	- 25	ns
tона	Output Hold Time	3 —	3	— 3	_	ns
tace	CE Access Time	— 10	—	12 —	- 25	ns
t doe	OE Access Time	— 5	—	6 —	- 15	ns
thzoe ⁽²⁾	OE to High-Z Output	0 5	0	6 0	8	ns
tlzoe ⁽²⁾	OE to Low-Z Output	0 —	0	- 2	_	ns
thzce ⁽²⁾	CE to High-Z Output	0 5	0	6 0	8	ns
tLZCE ⁽²⁾	CE to Low-Z Output	2 —	2	— 2		ns

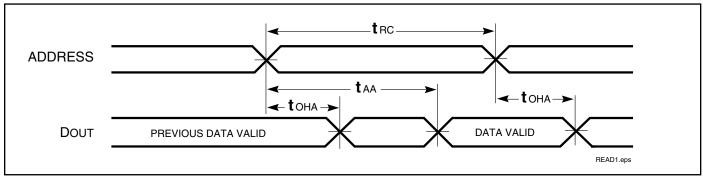
Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

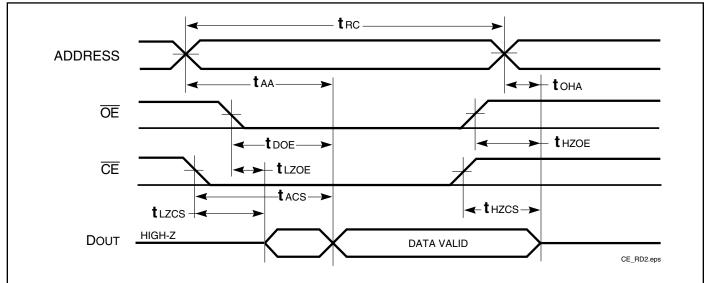

2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

3. Not 100% tested.

ACTEST CONDITIONS


Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS



AC WAVEFORMS READ CYCLE NO. 1^(1,2)

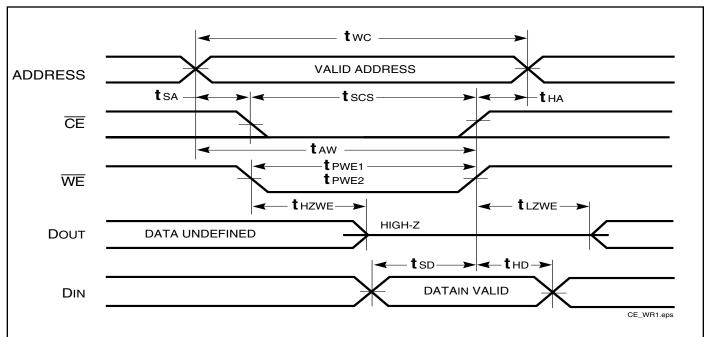
READ CYCLE NO. 2^(1,3)

Notes:

- 1. $\overline{\text{WE}}$ is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.

3. Address is valid prior to or coincident with $\overline{\text{CE}}$ LOW transitions.

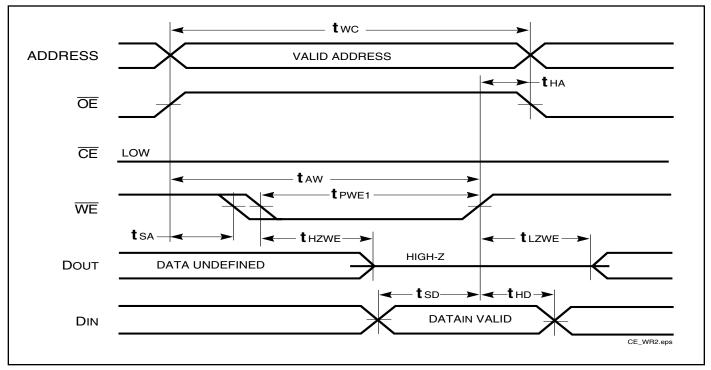
					· · · ·		<u> </u>	
		-1	0	-12	2	-25		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	10	_	12	—	25	—	ns
t SCE	CE to Write End	7	_	9	_	18	_	ns
taw	Address Setup Time to Write End	7	_	9	—	18	_	ns
tна	Address Hold from Write End	0	_	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	0	_	ns
tpwe1	$\overline{\text{WE}}$ Pulse Width ($\overline{\text{OE}}$ =High)	7	_	9	_	15	_	ns
tpwe2	WE Pulse Width (OE=Low)	7	_	9	_	15	_	ns
t sD	Data Setup to Write End	6	_	6	_	15	_	ns
t HD	Data Hold from Write End	0	_	0	_	0	_	ns
tHZWE ⁽²⁾	WE LOW to High-Z Output	_	6	_	6	_	15	ns
tLZWE ⁽²⁾	WE HIGH to Low-Z Output	3	_	3	_	5	_	ns


WRITE CYCLE SWITCHING CHARACTERISTICS^(1,3) (Over Operating Range)

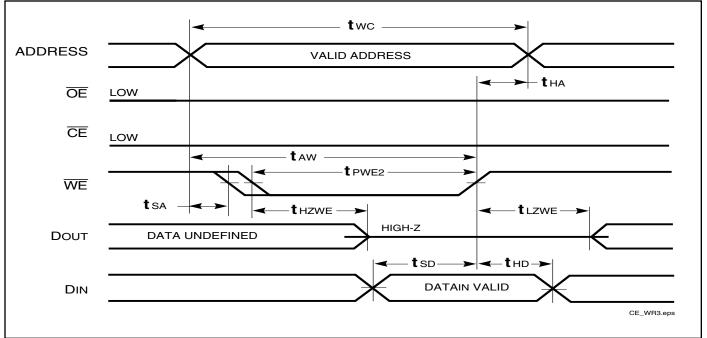
Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

 Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
The internal write time is defined by the overlap of CE LOW, and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.


AC WAVEFORMS WRITE CYCLE NO. 1 (\overline{WE} Controlled)^(1,2)

Notes:

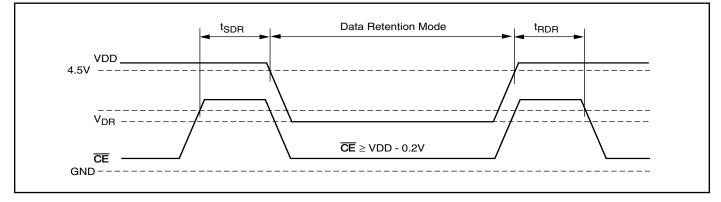

- The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.

WRITE CYCLE NO. 2 (OE is HIGH During Write Cycle) (1,2)

WRITE CYCLE NO. 3 (OE is LOW During Write Cycle) (1)

Notes:

- 1. The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
- 2. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.

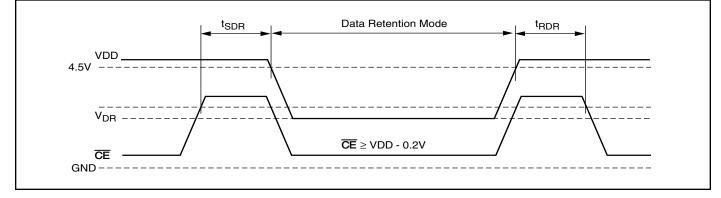

DATA RETENTION SWITCHING CHARACTERISTICS (HIGH SPEED) (IS61/64C5128AL)

Symbol	Parameter	Test Condition		Min.	Max.	Unit
Vdr	VDD for Data Retention	See Data Retention Waveform		2.9	5.5	V
ldr	Data Retention Current	$ \begin{array}{l} V_{DD} = 2.9V, \ \overline{CE} \geq V_{DD} - 0.2V \\ V_{IN} \geq V_{DD} - 0.2V, \ or \ V_{IN} \leq V_{SS} + 0.2V \end{array} $	Com. Ind.	_	8 10	mA
			Auto. typ. ⁽¹⁾	- 1	15	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0	—	ns
trdr	Recovery Time	See Data Retention Waveform		trc		ns

Note:

1. Typical Values are measured at $V_{DD} = 5V$, TA = 25°C and not 100% tested.

DATA RETENTION WAVEFORM (CE Controlled)


DATA RETENTION SWITCHING CHARACTERISTICS (LOW POWER) (IS61/64C5128AS)

Symbol	Parameter	Test Condition		Min.	Max.	Unit
Vdr	VDD for Data Retention	See Data Retention Waveform		2.9	5.5	V
Idr	Data Retention Current	$ \begin{array}{l} V_{DD} = 2.9V, \ \overline{CE} \geq V_{DD} - 0.2V \\ V_{IN} \geq V_{DD} - 0.2V, \ or \ V_{IN} \leq V_{SS} + 0.2V \end{array} $	Com. Ind.	_	0.8 0.9	mA
			Auto. typ. ⁽¹⁾	- 0.2	2	
tsdr	Data Retention Setup Time	See Data Retention Waveform		0		ns
t RDR	Recovery Time	See Data Retention Waveform		trc		ns

Note:

1. Typical Values are measured at $V_{DD} = 5V$, TA = 25°C and not 100% tested.

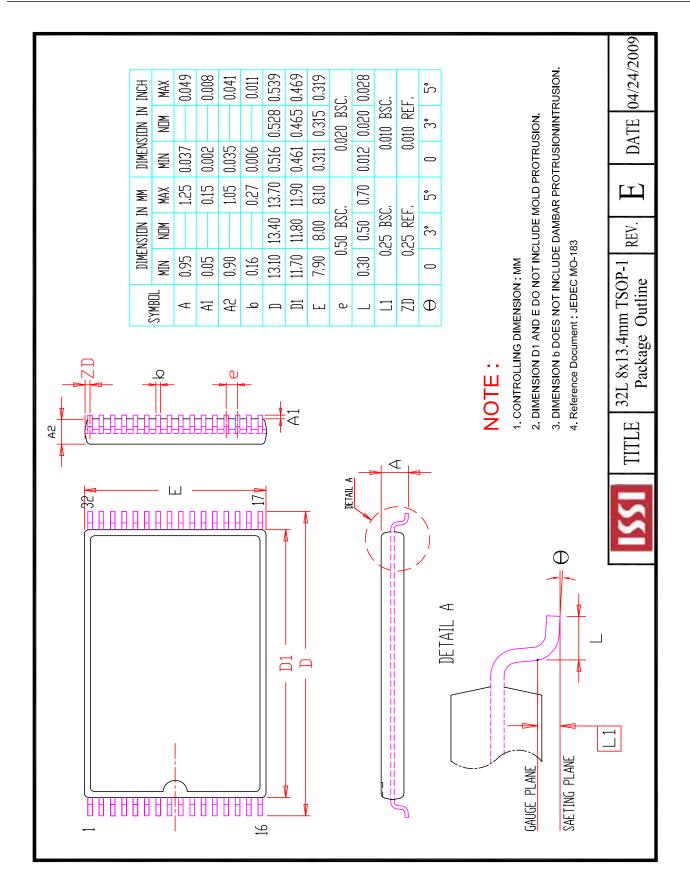
DATA RETENTION WAVEFORM (CE Controlled)

HIGH SPEED (IS61/64C5128AL) ORDERING INFORMATION

Industrial Range: –40°C to +85°C

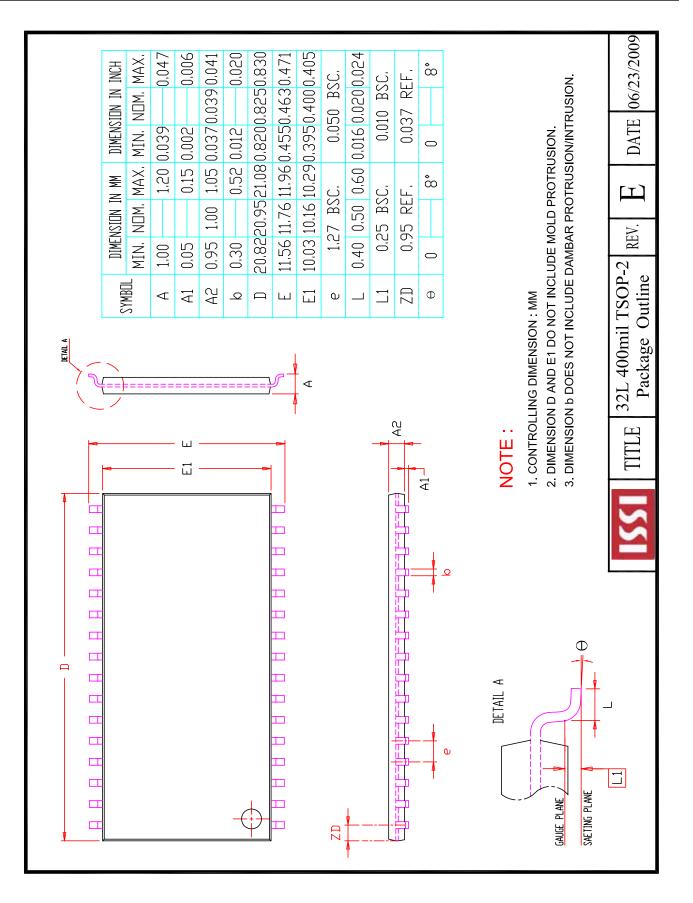
Speed (ns)	Order Part No.	Package	
10	IS61C5128AL-10KLI	400-mil Plastic SOJ, Lead-free	
	IS61C5128AL-10TLI	44-pin TSOP-II, Lead-free	

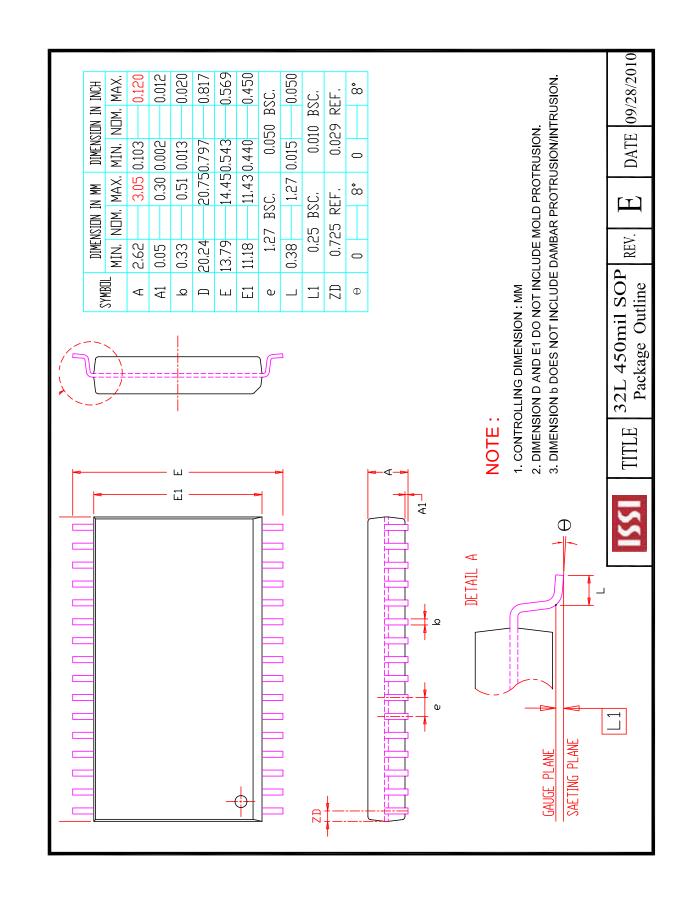
Automotive Range: –40°C to +125°C


Speed (ns)	Order Part No.	Package
12	IS64C5128AL-12KLA3	400-mil Plastic SOJ, Lead-free
	IS64C5128AL-12CTLA3	44-pin TSOP-II, Lead-free, Copper Leadframe

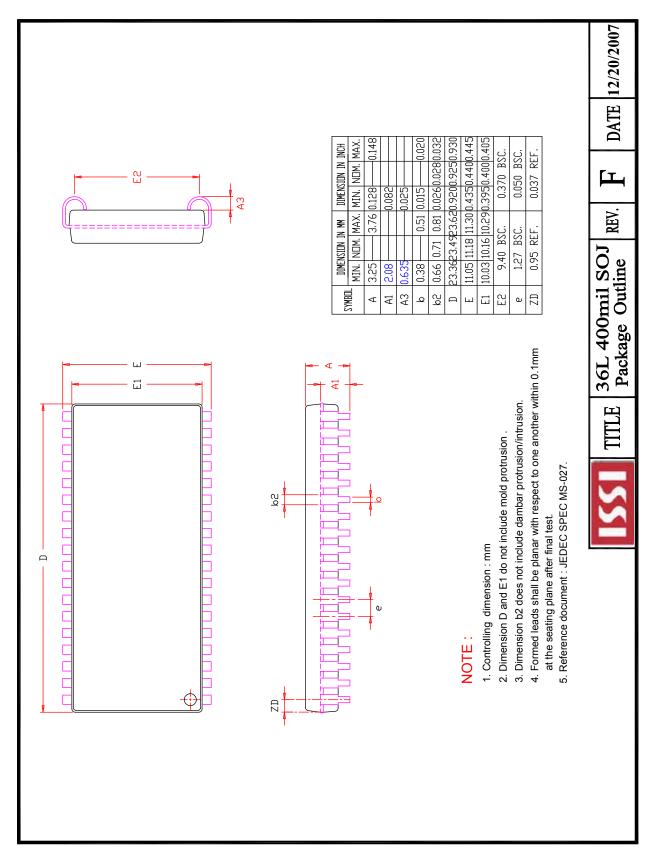
LOW POWER (IS61/64C5128AS) ORDERING INFORMATION

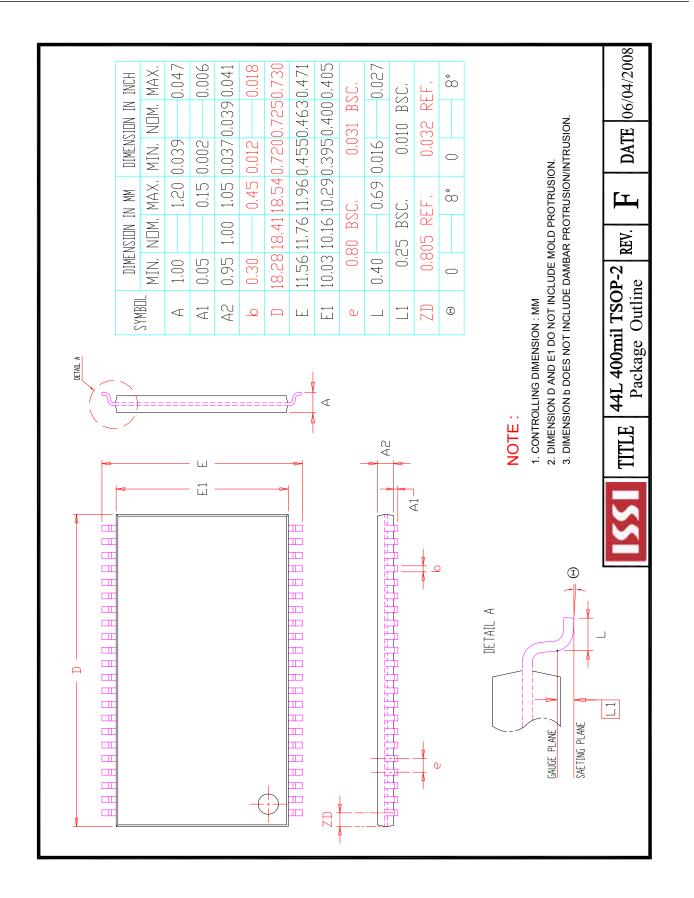
Industrial Range: -40°C to +85°C


Speed (ns)	Order Part No.	Package	
25	IS61C5128AS-25QLI	450-mil Plastic SOP, Lead-free	
	IS61C5128AS-25HLI	32-pin STSOP-I, Lead-free	
	IS61C5128AS-25TLI	32-pin TSOP-II, Lead-free	



Integrated Silicon Solution, Inc. — www.issi.com Rev. C1 12/18/2016





Integrated Silicon Solution, Inc. — www.issi.com Rev. C1 12/18/2016

Integrated Silicon Solution, Inc. — www.issi.com Rev. C1 12/18/2016