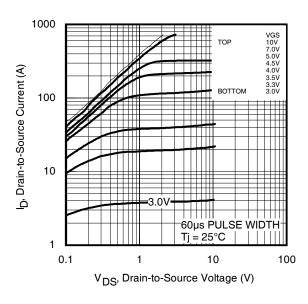
International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

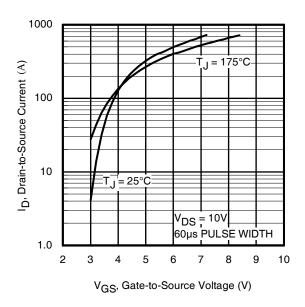

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.034		V/°C	Reference to 25°C, I _D = 1mA
			2.5	3.1		V _{GS} = 10V, I _D = 75A ③⑩
R _{DS(on)}	Static Drain-to-Source On-Resistance			4.7	mΩ	V _{GS} = 5.0V, I _D = 40A ③
			_	5.9		V _{GS} = 4.5V, I _D = 40A ③
V _{GS(th)}	Gate Threshold Voltage	1.4		2.7	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	120	_		S	V _{DS} = 10V, I _D = 75A®
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 40V, V_{GS} = 0V$
				250		$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-200		V _{GS} = -16V
Q _a	Total Gate Charge		75	110		I _D = 75A ⁽¹⁾
Q_{gs}	Gate-to-Source Charge		28		nC	$V_{DS} = 32V$
Q _{qd}	Gate-to-Drain ("Miller") Charge		40			V _{GS} = 5.0V ③
t _{d(on)}	Turn-On Delay Time		19			V _{DD} = 20V
t _r	Rise Time		180			I _D = 75A ⁽¹⁾
t _{d(off)}	Turn-Off Delay Time		30		ns	$R_G = 4.0\Omega$
t _f	Fall Time		49			V _{GS} = 5.0V ③
L _D	Internal Drain Inductance		4.5			Between lead,
					nH	6mm (0.25in.)
L _s	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		5080			V _{GS} = 0V
Coss	Output Capacitance		970			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		570		рF	f = 1.0 MHz
C _{oss}	Output Capacitance		3310			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		870			$V_{GS} = 0V, V_{DS} = 32V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		1280]	V _{GS} = 0V, V _{DS} = 0V to 32V ④

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current		_	200 (9)		MOSFET symbol	
	(Body Diode)				Α	showing the	
I _{SM}	Pulsed Source Current			790		integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 75A$ (0), $V_{GS} = 0V$ (3)	
t _{rr}	Reverse Recovery Time		26	39	ns	$T_J = 25^{\circ}C$, $I_F = 75A \oplus V_{DD} = 20V$	
Q _{rr}	Reverse Recovery Charge		18	27	nC	di/dt = 100A/µs ③	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)					

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $\begin{tabular}{ll} \hline \& Limited by T_{Jmax}, starting $T_J=25^\circ$C$, \\ $L=0.079mH$, $R_G=25\Omega$, $I_{AS}=75A$, $V_{GS}=10V$. \\ Part not recommended for use above this value. \\ \hline \end{tabular}$
- \P C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- S Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ⑤ This value determined from sample failure population. 100% tested to this value in production.
- This is only applied to TO-220AB package.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- All AC and DC test condition based on former Package limited current of 75A.


1000

(Y) tuesum 100

O expression of the policy of the p

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

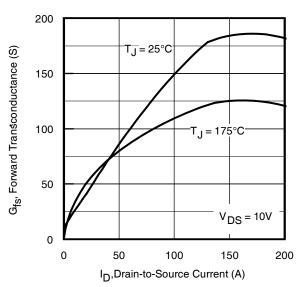
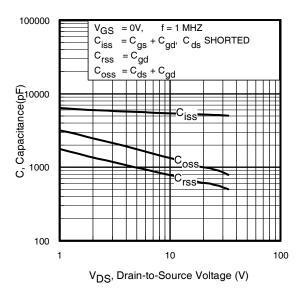
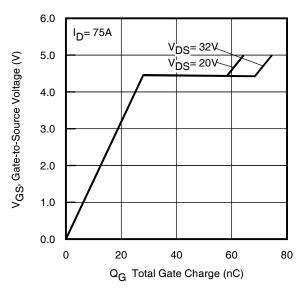




Fig 3. Typical Transfer Characteristics

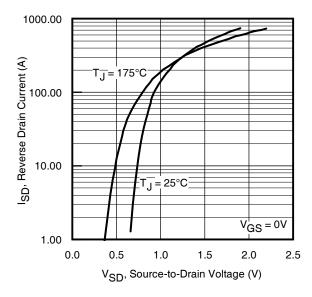

Fig 4. Typical Forward Transconductance vs. Drain Current

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

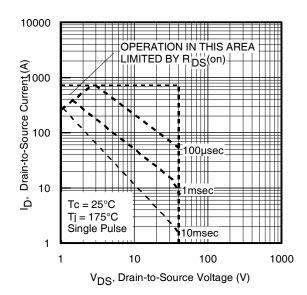
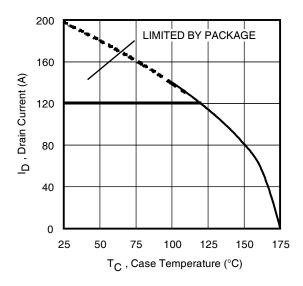
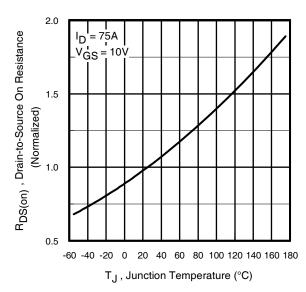




Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

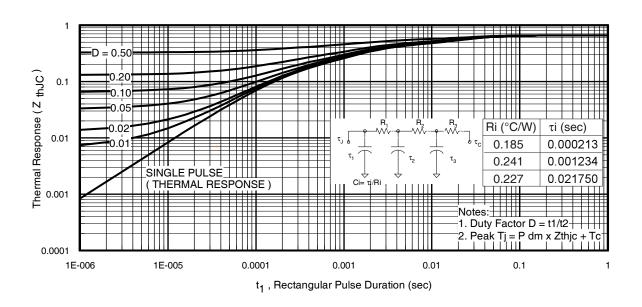


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

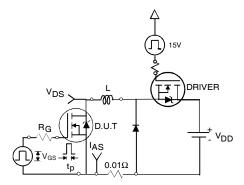


Fig 12a. Unclamped Inductive Test Circuit

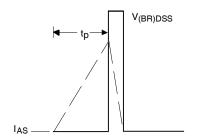
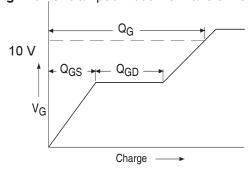
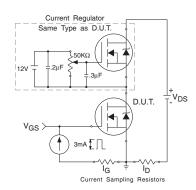
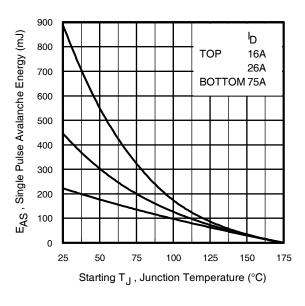


Fig 12b. Unclamped Inductive Waveforms

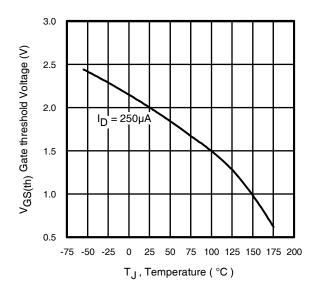

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 14. Threshold Voltage vs. Temperature www.irf.com

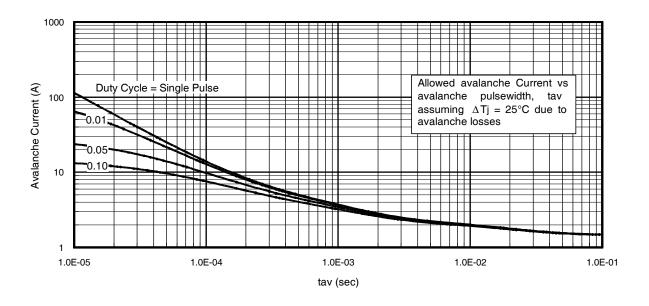
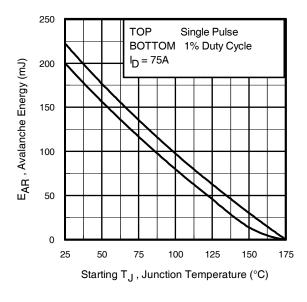



Fig 15. Typical Avalanche Current vs. Pulsewidth

Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16). t_{av} = Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{th,JC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D\;(ave)} &= 1/2\;(\;1.3\text{-BV-I}_{av}) = \triangle T/\;Z_{thJC}\\ I_{av} &= 2\triangle T/\;[1.3\text{-BV-Z}_{th}]\\ E_{AS\;(AR)} &= P_{D\;(ave)} \cdot t_{av} \end{split}$$

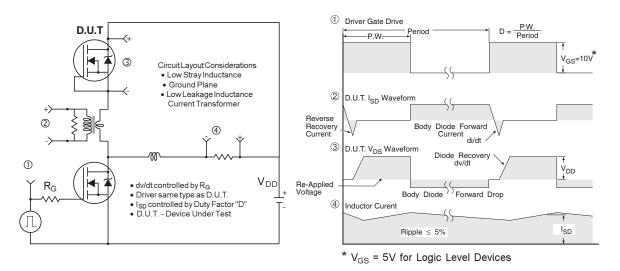


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

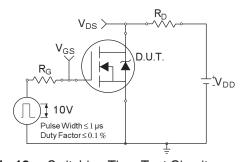


Fig 18a. Switching Time Test Circuit

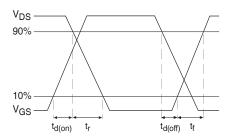
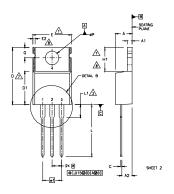
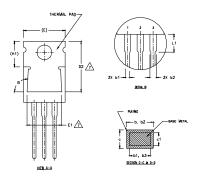




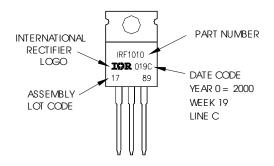
Fig 18b. Switching Time Waveforms

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

	DIMENSIONS						
SYMBOL	MILLIMETERS		INC				
	MIN.	MAX.	MIN.	MAX.	NOTES		
Α	3,56	4,82	,140	,190			
A1	0.51	1,40	.020	.055			
A2	2,04	2.92	.080	.115			
ь	0.38	1.01	.015	.040			
ь1	0,38	0,96	,015	,038	5		
b2	1,15	1,77	.045	.070			
b3	1.15	1,73	.045	.068			
c	0.36	0.61	.014	.024			
c1	0.36	0,56	.014	.022	5		
D	14,22	16,51	,560	.650	4		
D1	8.38	9.02	.330	.355			
D2	12.19	12.88	.480	.507	7		
E	9.66	10.66	.380	.420	4,7		
E1	8,38	8,89	.330	.350	7		
e		BSC	.100 BSC		1		
e1	5.	08	.200	BSC			
H1	5.85	6.55	.230	.270	7,8		
L	12.70	14,73	.500	.580			
L1	-	6.35	-	.250	3		
øΡ	3,54	4,08	.139	.161			
Q	2.54	3.42	.100	.135			
ø	90*-	-93'	90*				
l				1			

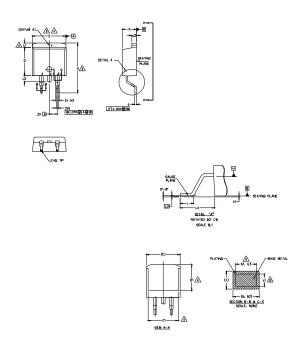
- MINENSONING AND TOLERANCING PER ASME Y14.5 M- 1994.
 DIMENSONIS ARE SHOWN IN NOTES [MILLIMETERS].
 LEAD DIMENSON AND FINSH UNCONTROLLED IN L.1.
 DIMENSON D. & E DO NOT INCLUDE WICE THE MOLD FLASH
 SHALL NOT EXCELD .005 (0.127) PER SIDE. THESE DIMENSONIS ARE
 MEASURED AT THE OUTERMOSE STRUKTINGS OF THE PLASTIC BODY.
 DIMENSON 15 & c.1 APPLY TO BISSE METAL ONLY.
 CONTROLLING DIMENSON: INCORP.
 THERMIAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E.H.1,02 & E1
 DIMENSON EX. ATH DEFINE A ZONE WHERE STAMPING
 AND SINGULATION IRREGULARTIES ARE ALLOWED.


TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF 1010

LOT CODE 1789

ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C"


Note: "P" in assembly line position indicates "Lead-Free"

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

NOTES; 1. DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.004] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

ATHERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, LI, DI & E1.

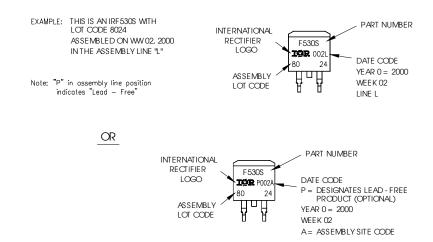
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- B. OUTLINE CONFORMS TO JEDEC DUTLINE TO-263AB.

S W		N			
B	MILLIM	ETERS	INC	707	
L	MIN.	MAX.	MIN.	MAX.	Ė
Α	4.06	4.83	.160	.190	
A1	0'00	0,254	,000	.010	
b	0,51	0.99	.020	.039	
b1	0,51	0.89	.020	.035	5
b2	1,14	1,78	.045	,070	
b3	1,14	1,73	.045	,068	5
c	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1,14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270		4
Ε	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
e	2.54	BSC	.100 BSC		
н	14.61	15.88	.575 .625		
L	1.78	2.79	.070	.110	
L1	-	1.65	-	.066	4
L2	1.27	1,78	-	.070	
L3	0.25 BSC		.010 BSC		
L4	4.78	5.28	.188 .208		

LEAD ASSIGNMENTS

HEXFET 1.- GATE 2, 4.- DRAIN

IGBTs, CoPACK

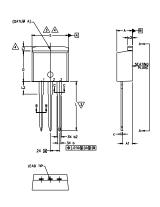

1.- GATE
2, 4.- COLLECTOR
3.- EMITTER

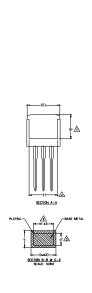
DIODES

2. 4.- CATHOL 3.- ANODE

* PART DEPENDENT

D²Pak (TO-263AB) Part Marking Information




Notes:

- 1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-262 Package Outline

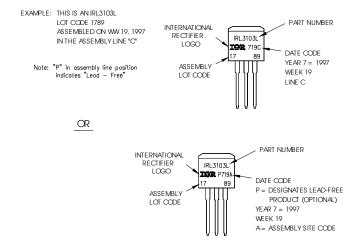
Dimensions are shown in millimeters (inches)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14,5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
 - 6. CONTROLLING DIMENSION: INCH.
 - 7.— OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

S						
X		Ŋ				
S Y M B O L	MILLIM	ETERS	INC	NO TES		
L	MIN.	MAX.	MIN.	MAX.	S	
Α	4.06	4.83	.160	.190		
A1	2.03	3.02	.080	.119		
b	0.51	0.99	.020	.039		
ь1	0.51 0.89		.020	.035	5	
b2	1,14 1,78		.045	.070		
b3	1,14	1.73	.045	.068	5	
c	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	-	.270	-	4	
Ε	9.65	10.67	.380	.420	3,4	
Εſ	6.22	-	.245		4	
е	2,54	BSC	.100			
L	13,46	14,10	.530	.555		
L1	-	1,65	-	.065	4	
L2	3,56	3,71	.140	.146		

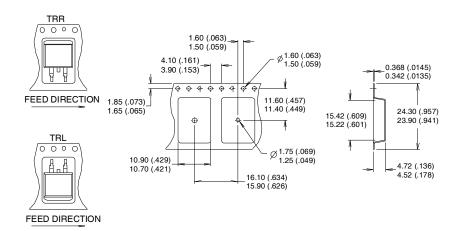
LEAD ASSIGNMENTS

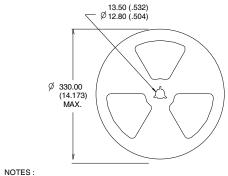

<u>HEXFET</u>

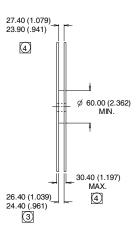
- 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBTs. CoPACK

- 1,- GATE 2,- COLLECTOR 3.- EMITTER 4,- COLLECTOR


TO-262 Part Marking Information




- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak Tape & Reel Infomation

Dimensions are shown in millimeters (inches)

- COMFORMS TO EIA-418.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION MEASURED @ HUB.
 INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

> International IOR Rectifier

IR WORLD HEADQUARTERS: 101N. Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 06/2012

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.