

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Parameter	Symbol	Conditions	Value			11
			min.	typ.	max.	Unit
Static Characteristic			,			•
Collector-emitter breakdown voltage	V(BR)CES	V _{GE} = 0V, / _C = 0.50mA	1000	-	-	V
Collector-emitter saturation voltage	V∕CEsat	$V_{GE} = 15.0V$, $I_{C} = 30.0A$ $T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	1.55 1.70 1.80	1.90 - -	V
Gate-emitter threshold voltage	VGE(th)	$I_C = 0.80$ mA, $V_{CE} = V_{GE}$	5.1	5.8	6.4	V
Zero gate voltage collector current	/ces	$V_{CE} = 1000V, V_{GE} = 0V$ $T_{vj} = 25^{\circ}C$ $T_{vj} = 175^{\circ}C$			50.0 2500.0	μA
Gate-emitter leakage current	/ _{GES}	V _{CE} = 0V, V _{GE} = 20V	-	-	600	nA
Transconductance	g_{fs}	$V_{CE} = 20V$, $I_{C} = 30.0A$	-	28.0	-	S
Integrated gate resistor	/ G			none		Ω

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Parameter	Symbol	Conditions	Value			11
			min.	typ.	max.	Unit
Dynamic Characteristic			•			
Input capacitance	Cies	V _{CE} = 25V, V _{GE} = 0V, f = 1MHz	-	3575	-	
Output capacitance	Coes		-	98	-	pF
Reverse transfer capacitance	Cres		-	76	-	
Gate charge	Q_{G}	V _{CC} = 800V, I _C = 30.0A, V _{GE} = 15V	-	217.0	-	nC
Internal emitter inductance measured 5mm (0.197 in.) from case	LE		-	13.0	-	nH

Switching Characteristic, Inductive Load, at T_{vj} = 25°C

Parameter	Cymah al	Conditions	Value			11
	Symbol		min.	typ.	max.	Unit
IGBT Characteristic	•					•
Turn-on delay time	<i>t</i> d(on)	<i>T</i> _{vj} = 25°C,	-	33	-	ns
Rise time	<i>t</i> r	$V_{CC} = 600V$, $I_{C} = 30.0A$, $V_{GE} = 0.0/15.0V$,	-	21	-	ns
Turn-off delay time	<i>t</i> d(off)	$r_{\rm G} = 16.0\Omega$, $L_{\rm \sigma} = 105 {\rm nH}$, $C_{\rm \sigma} = 50 {\rm pF}$ $L_{\rm \sigma}$, $C_{\rm \sigma}$ from Fig. E Energy losses include "tail" and diode reverse recovery using the IKW30N100T duopak.	-	535	-	ns
Fall time	<i>t</i> f		-	34	-	ns
Turn-on energy	<i>E</i> on		-	2.20	-	mJ
Turn-off energy	E _{off}		-	1.60	-	mJ
Total switching energy	Ets		-	3.80	-	mJ

Switching Characteristic, Inductive Load, at T_{vj} = 175°C

Parameter	Symbol	Conditions	Value			11:4:4
	Symbol		min.	typ.	max.	Unit
IGBT Characteristic	•					•
Turn-on delay time	<i>t</i> d(on)	T_{vj} = 175°C, V_{CC} = 600V, I_{C} = 30.0A, V_{GE} = 0.0/15.0V, I_{G} = 16.0 Ω , I_{G} = 105nH, I_{G} = 50pF I_{G} , I_{G} from Fig. E Energy losses include "tail" and diode reverse recovery using the IKW30N100T duopak.	-	33	-	ns
Rise time	<i>t</i> r		-	30	-	ns
Turn-off delay time	t _{d(off)}		-	610	-	ns
Fall time	<i>t</i> f		-	60	-	ns
Turn-on energy	<i>E</i> on		-	3.20	-	mJ
Turn-off energy	E _{off}		-	2.40	-	mJ
Total switching energy	Ets		-	5.60	-	mJ

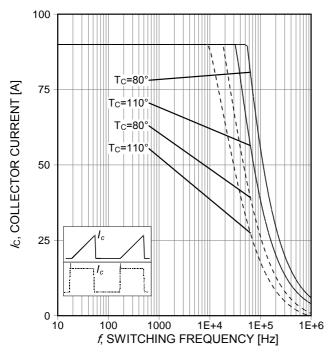


Figure 1. Collector current as a function of switching frequency ($T_{\rm j} \le 175^{\circ}{\rm C}$, D=0.5, $V_{\rm CE}$ =600V, $V_{\rm GE}$ =15/0V, $R_{\rm G}$ =16 Ω)

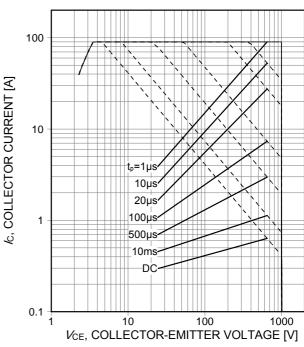


Figure 2. Forward bias safe operating area (D=0, T_C =25°C, T_j ≤175°C; V_{GE} =15V)

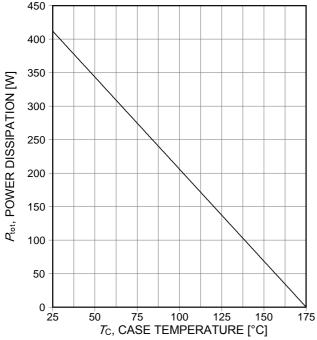


Figure 3. Power dissipation as a function of case temperature $(T_i \le 175^{\circ}C)$

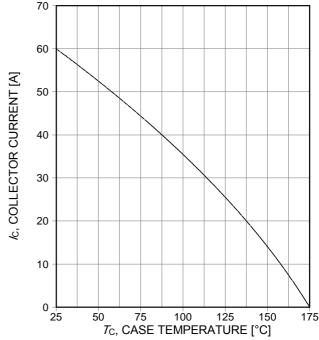


Figure 4. Collector current as a function of case temperature ($V_{GE} \ge 15V$, $T_{j} \le 175^{\circ}C$)

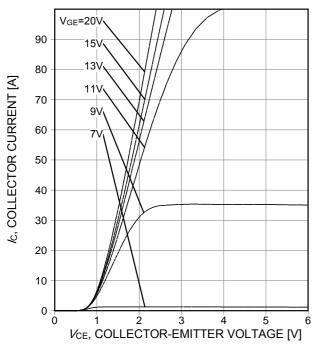


Figure 5. Typical output characteristic $(T_i=25^{\circ}C)$

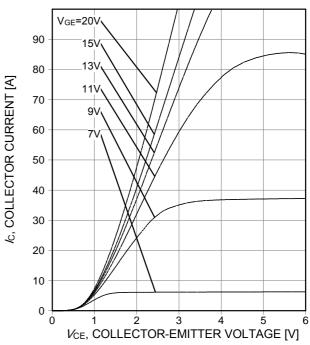


Figure 6. Typical output characteristic $(T_i=175^{\circ}\text{C})$

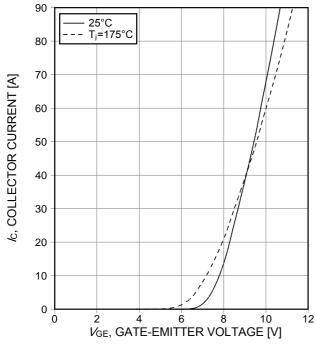


Figure 7. Typical transfer characteristic $(V_{CE}=20V)$

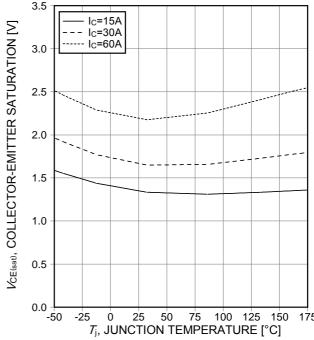


Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature ($V_{\rm GE}$ =15V)

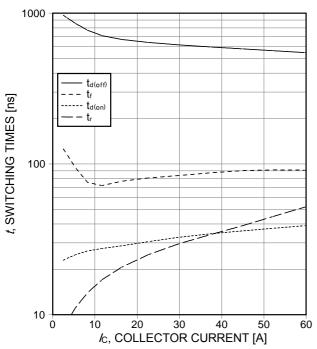


Figure 9. Typical switching times as a function of collector current

(inductive load, $T_{\rm j}$ =175°C, $V_{\rm CE}$ =600V, $V_{\rm GE}$ =15/0V, $R_{\rm G}$ =16 Ω ,Dynamic test circuit in Figure E)

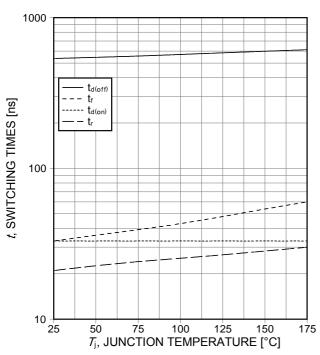


Figure 11. Typical switching times as a function of junction temperature

(inductive load, V_{CE} =600V, V_{GE} =15/0V, I_{CE} =30A, I_{CE} =16 Ω ,Dynamic test circuit in Figure E)

Figure 10. Typical switching times as a function of gate resistor

(inductive load, $T_{\rm j}$ =175°C, $V_{\rm CE}$ =600V, $V_{\rm GE}$ =15/0V, $I_{\rm C}$ =30A,Dynamic test circuit in Figure E)

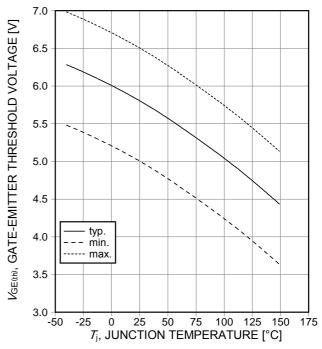


Figure 12. Gate-emitter threshold voltage as a function of junction temperature (/c=0.7mA)

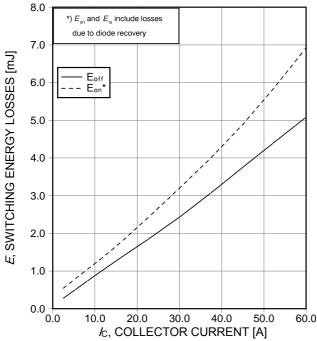


Figure 13. Typical switching energy losses as a function of collector current (inductive load, T_j =175°C, V_{CE} =600V, V_{GE} =15/0V, R_{G} =16 Ω ,Dynamic test circuit in Figure E)

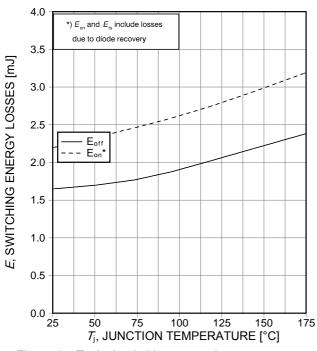


Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V_{CE}=600V, V_{GE}=15/0V, I_C=30A, R_G=16Ω,Dynamic test circuit in Figure E)

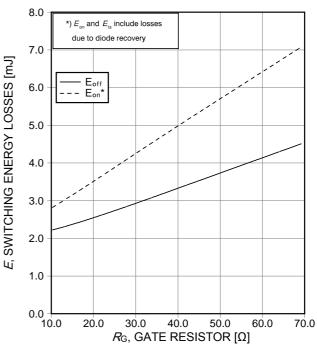


Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T_j =175°C, V_{CE} =600V, V_{GE} =15/0V, V_{CE} =30A,Dynamic test circuit in Figure E)

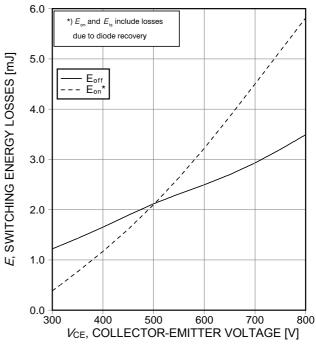


Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, T_j =175°C, V_{GE} =15/0V, I_{C} =30A, I_{C} =16 Ω ,Dynamic test circuit in Figure E)

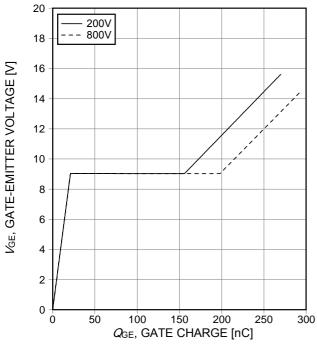


Figure 17. Typical gate charge (/c=30A)

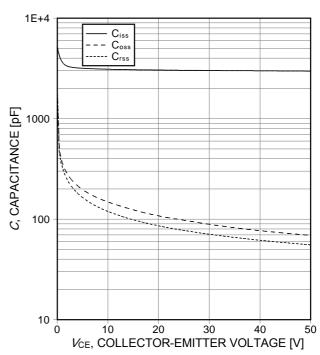


Figure 18. Typical capacitance as a function of collector-emitter voltage (\$\mathcal{V}_{GE} = 0 \mathcal{V}_{,} f = 1 \text{MHz} \)

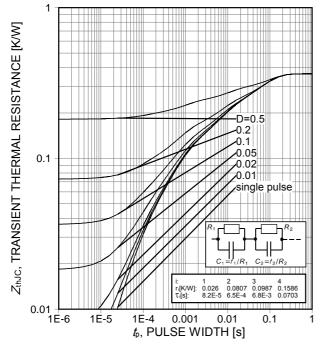
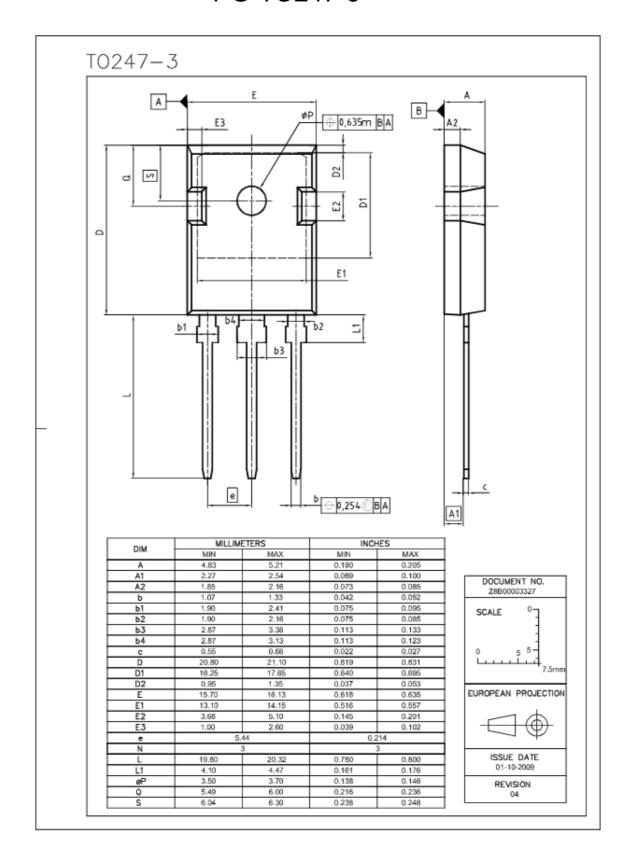



Figure 19. IGBT transient thermal resistance $(D=t_0/T)$

PG-TO247-3

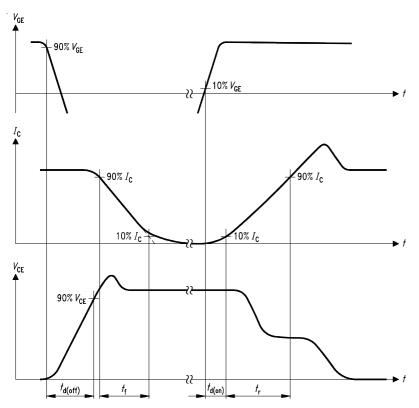


Figure A. Definition of switching times

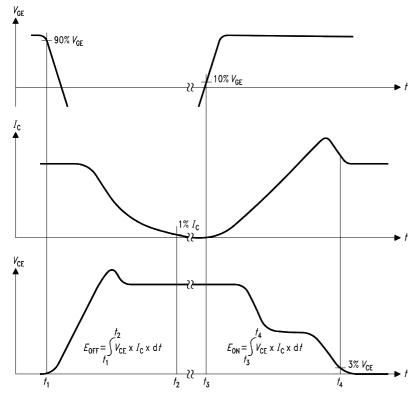


Figure B. Definition of switching losses

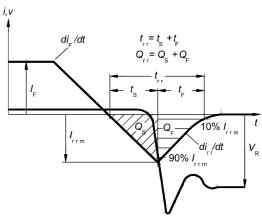


Figure C. Definition of diodes switching characteristics

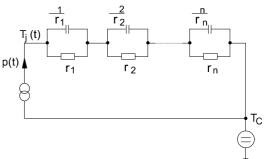


Figure D. Thermal equivalent circuit

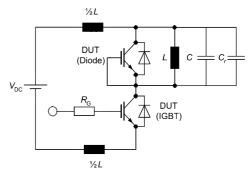


Figure E. Dynamic test circuit Leakage inductance L= 180nH, Stray capacitor C_o = 40pF, Relief capacitor C_r = 1nF (only for ZVT switching)

Published by Infineon Technologies AG 81726 Munich, Germany 81726 München, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.