
Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Logic Supply Voltage, V _{DD} (Note 1)	
High-Voltage Supply Voltage, V _{PP} (Note 1)	
Logic Input Levels	
Ground Current (Note 2)	
Maximum Junction Temperature, T _{J(MAX)}	
Storage Temperature, T _S	–65°C to +125°C
Continuous Total Power Dissipation:	
44-lead PQFP (Note 3)	1200 mW
44-lead PLCC (Note 3)	
,	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

- Note 1: All voltages are referenced to GND.
 - **2:** Duty cycle is limited by the total power dissipated in the package.
 - 3: For operations above 25°C ambient, derate linearly to 85°C at 20 mW/°C.

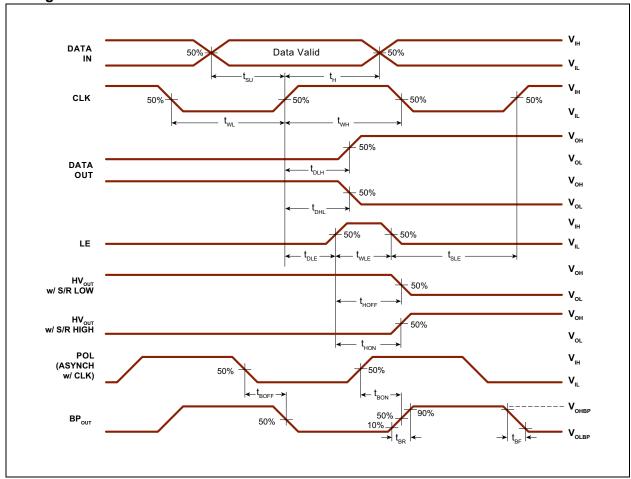
RECOMMENDED OPERATING CONDITIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Logic Supply Voltage	V_{DD}	4.5	_	5.5	V	
High-Voltage Supply Voltage	V_{PP}	12	_	60	V	
High-Level Input Voltage	V_{IH}	2.4	_	V_{DD}	V	
Low-Level Input Voltage	V_{IL}	0	_	0.8	V	
Clock Frequency	f _{CLK}	0	_	5	MHz	
Operating Ambient Temperature	T _A	-40	_	+85	°C	
Allowable Current through Output Diodes	I _{OD}	_	_	200	mA	

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over recommended operating conditions unless otherwise stated. V _{DD} = 5V, V _{PP} = 60V.												
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions						
V _{DD} Supply Current		I _{DD}	_	_	15	mA	f _{CLK} = 5 MHz, V _{DD} = 5.5V					
Quiescent V _{PP} Supply Current		I _{PPQ}	_	_	0.5	mA						
Quiescent V _{DD} Supply Current	I _{DDQ}	_	_	0.5	mA	All V _{IN} = GND or VDD						
High-Level Logic Input Current	I _{IH}	_	_	1	μΑ	$V_{IH} = V_{DD}$						
Low-Level Logic Input Current		I _{IL}	_	_	-1	μΑ	V _{IL} = 0V					
High-Level Output Data Out	HV _{OUT}	\/	50	_	_	V	$I_{O} = -5 \text{ mA}, V_{PP} = 60 \text{V}$					
High-Level Output Data Out	Data Out	V _{OH}	4.6	_	_	V	I _O = –100 μA					
Low Lovel Output Voltage	HV _{OUT}	\ \/	_	_	8	V	$I_{O} = 5 \text{ mA}, V_{PP} = 60 \text{V}$					
Low-Level Output Voltage	Data Out	V _{OL}	_	_	0.4	V	I _O = 100 μA					
Low-Level Output Voltage, Backp	V _{OLBP}	_		3	V	I _O = 10 mA						
High-Level Output Voltage, Back	V _{OHBP}	57	_	_	V	I _O = -10 mA						

AC ELECTRICAL CHARACTERISTICS


Electrical Specifications: V _{DD} = 5V, V _{PP} = 60V, T _A = 25°C, Logic Input Rise/Fall Time = 10 ns.											
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions					
Clock Frequency	f _{CLK}	_	_	5	MHz						
Clock Width, High or Low	t_{WL} , t_{WH}	100	_	_	ns						
Data Setup Time before Clock Rises	t _{SU}	25	_	_	ns						
Data Hold Time after Clock Rises	t _H	50	_	_	ns						
Time from Latch Enable or POL to HV _{OUT}	t _{HON,} t _{HOFF}	_	l	500	ns	C _L = 20 pF					
Time from POL to BP _{OUT}	t _{BON,} t _{BOFF}	_		500	ns	C _L = 20 pF					
Delay Time Clock to Data High to Low	t _{DHL}	_		200	ns	C _L = 10 pF					
Delay Time Clock to Data Low to High	t _{DLH}	_		200	ns	C _L = 10 pF					
Delay Time Clock to Latch Enable Low to High	t _{DLE}	50	_	_	ns						
Latch Enable Pulse Width	t _{WLE}	100	_	_	ns						
Latch Enable Setup Time before Clock Falls	t _{SLE}	50	_	_	ns						
BP _{OUT} Rise and Fall Time	t _{BR} , t _{BF}	10	_	1000	μs	C _L = 350 pF					
BP _{OUT} Rise and Fall Time Difference	t _{BR} -t _{BF}	_		100	μs	C _L = 350 pF					

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Operating Ambient Temperature	T _A	-40	_	+85	°C	
Storage Temperature	T _S	-65	_	+125	°C	
PACKAGE THERMAL RESISTANCE						
44-lead PQFP	θ_{JA}	_	51	_	°C/W	
44-lead PLCC	θ_{JA}	_	37	_	°C/W	

HV66

Timing Waveforms

2.0 PIN DESCRIPTION

The details on the pins of HV66 44-lead PQFP and 44-lead PLCC are in Table 2-1 and Table 2-2, respectively. Refer to **Package Types** for the location of pins.

TABLE 2-1: 44-LEAD PQFP PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	HVOUT11	High-voltage output
2	HVOUT12	High-voltage output
3	HVOUT13	High-voltage output
4	HVOUT14	High-voltage output
5	HVOUT15	High-voltage output
6	HVOUT16	High-voltage output
7	HVOUT17	High-voltage output
8	HVOUT18	High-voltage output
9	HVOUT19	High-voltage output
10	HVOUT20	High-voltage output
11	HVOUT21	High-voltage output
12	HVOUT22	High-voltage output
13	HVOUT23	High-voltage output
14	HVOUT24	High-voltage output
15	HVOUT25	High-voltage output
16	HVOUT26	High-voltage output
17	HVOUT27	High-voltage output
18	HVOUT28	High-voltage output
19	HVOUT29	High-voltage output
20	HVOUT30	High-voltage output
21	HVOUT31	High-voltage output
22	HVOUT32	High-voltage output
23	DATA OUT	Data output pin
24	GND	Supply ground
25	NC	No connection
26	BL	Blanking pin
27	POL	Polarity pin
28	LE	Latch enable pin
29	VDD	Logic supply voltage
30	CLK	Clock pin
31	DIR	Direction pin
32	DATA IN	Data input pin
33	VPP	High-voltage power supply
34	BPOUT	Back plane output
35	HVOUT1	High-voltage output
36	HVOUT2	High-voltage output

HV66

TABLE 2-1: 44-LEAD PQFP PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description								
37	HVOUT3	High-voltage output								
38	HVOUT4	High-voltage output								
39	HVOUT5	High-voltage output								
40	HVOUT6	High-voltage output								
41	HVOUT7	High-voltage output								
42	HVOUT8	High-voltage output								
43	HVOUT9	High-voltage output								
44	HVOUT10	High-voltage output								

TABLE 2-2: 44-LEAD PLCC PIN FUNCTION TABLE

TT-LLAD I LO	C FIN FUNCTION TABLE
Pin Name	Description
HVOUT16	High-voltage output
HVOUT17	High-voltage output
HVOUT18	High-voltage output
HVOUT19	High-voltage output
HVOUT20	High-voltage output
HVOUT21	High-voltage output
HVOUT22	High-voltage output
HVOUT23	High-voltage output
HVOUT24	High-voltage output
HVOUT25	High-voltage output
HVOUT26	High-voltage output
HVOUT27	High-voltage output
HVOUT28	High-voltage output
HVOUT29	High-voltage output
HVOUT30	High-voltage output
HVOUT31	High-voltage output
HVOUT32	High-voltage output
DATA OUT	Data output pin
GND	Supply ground
NC	No connection
BL	Blanking pin
POL	Polarity pin
LE	Latch enable pin
VDD	Logic supply voltage
CLK	Clock pin
DIR	Direction pin
DATA IN	Data input pin
VPP	High-voltage power supply
	Pin Name HVOUT16 HVOUT17 HVOUT18 HVOUT20 HVOUT21 HVOUT21 HVOUT22 HVOUT23 HVOUT24 HVOUT25 HVOUT26 HVOUT27 HVOUT28 HVOUT29 HVOUT30 HVOUT31 HVOUT31 HVOUT32 DATA OUT GND NC BL POL LE VDD CLK DIR DATA IN

TABLE 2-2: 44-LEAD PLCC PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description
29	BPOUT	Black plane output
30	HVOUT1	High-voltage output
31	HVOUT2	High-voltage output
32	HVOUT3	High-voltage output
33	HVOUT4	High-voltage output
34	HVOUT5	High-voltage output
35	HVOUT6	High-voltage output
36	HVOUT7	High-voltage output
37	HVOUT8	High-voltage output
38	HVOUT9	High-voltage output
39	HVOUT10	High-voltage output
40	HVOUT11	High-voltage output
41	HVOUT12	High-voltage output
42	HVOUT13	High-voltage output
43	HVOUT14	High-voltage output
44	HVOUT15	High-voltage output

3.0 FUNCTIONAL DESCRIPTION

Follow the steps in Table 3-1 to power up and power down the HV66.

TABLE 3-1: POWER-UP AND POWER-DOWN SEQUENCE

	Power-up	Power-down				
Step	Description	Step	Description			
1	Connect ground.	1	Remove V _{PP.} (Note 1)			
2	Apply V _{DD} .	2	Remove all inputs.			
3	Set all inputs (Data, CLK, EN, etc.) to a known state.	3	Remove V _{DD} .			
4	Apply V _{PP.} (Note 1)	4	Disconnect ground.			

Note 1: The V_{PP} should not drop below V_{DD} during operation.

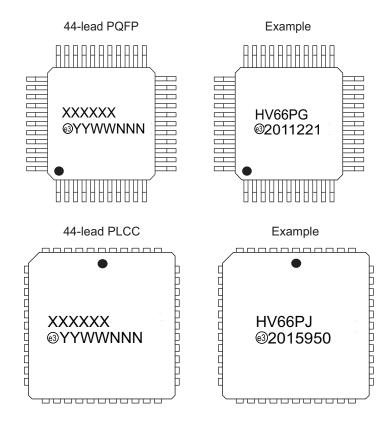
TABLE 3-2: TRUTH FUNCTION TABLE

Inputs									0	utputs																																								
Function	Data	CLK	LE	BL	POL	DIR	Shift Reg	ister		n-voltage Output	Data Out	BP _{OUT}																																						
							1 2	32	1	232	*																																							
Load S/R,	L or H	1	L	Ignore	Ignore	Н	$\text{Data} \to \text{Q}_1$	$\rightarrow Q_{32}$		gnore	Q ₃₂	Ignore																																						
R/L Shift	L or H	1	L	Ignore	Ignore	L	Q ₁ ←Q ₃₂ ←	Q ₁ ←Q ₃₂ ← Data Ignore				Ignore																																						
Load	Χ	H or L	Н	Н	Η	Х	**	** No C		No Change	Η																																							
Latches	Χ	H or L	Н	Н	L	Х	**			* *	No Change	L																																						
	L or H	1	Н	Н	Η	Η	$\text{Data} \to \text{Q}_1$	Data → Q ₁ → Q ₃₂		* *	Q ₃₂	Η																																						
Transparent	L or H	1	Н	Н	L	Н	$\text{Data} \to \text{Q}_1$		* *	Q ₃₂	L																																							
Mode	L or H	1	Н	Н	Η	L	Q ₁ ←Q ₃₂ ← Data		$Q_1{\leftarrow}Q_{32}\leftarrowData$		Q ₁ ←Q ₃₂ ← Data		$Q_1 \leftarrow Q_{32} \leftarrow Data$		**		Q_1	Η																																
	L or H	1	Н	Н	L	L	Q ₁ ←Q ₃₂ ← Data		Q ₁ ←Q ₃₂ ← Data		Q ₁ ←Q ₃₂ ← Data		$Q_1 {\leftarrow} Q_{32} \leftarrow Data$		$Q_1 {\leftarrow} Q_{32} \leftarrow Data$		$Q_1 {\leftarrow} Q_{32} \leftarrow Data$		Q ₁ ←Q ₃₂ ← Data		Q ₁ ←Q ₃₂ ← Data		Q ₁ ←Q ₃₂ ← Data		Q ₁ ←Q ₃₂ ← Data		Q ₁ ←Q ₃₂ ← Data			* *	Q_1	L																		
Blank	Х	Х	Χ	L	L	Х	Х		X		X		X		X		X		X		X		X		X		X		X		X		X		X		X		X		X		X		X			LL	Ignore	L
Control	Х	Х	Χ	L	Ι	X	Х	Х НН			Ignore	Ι																																						

Note: H = High-logic level

L = Low-logic level

X = Irrelevant


Ignore = The state of the specific input or output is irrelevant to demonstrate the occurred event.

↑ = Low-to-high transition

^{* =} Dependent on the previous stage's state before the last CLK or last LE high

4.0 PACKAGE MARKING INFORMATION

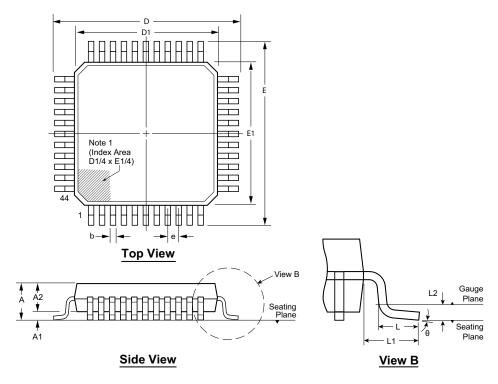
4.1 Packaging Information

Legend: XX...X Product Code or Customer-specific information

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

e3 Pb-free JEDEC® designator for Matte Tin (Sn)


This package is Pb-free. The Pb-free JEDEC designator (e3)

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

44-Lead PQFP Package Outline (PG)

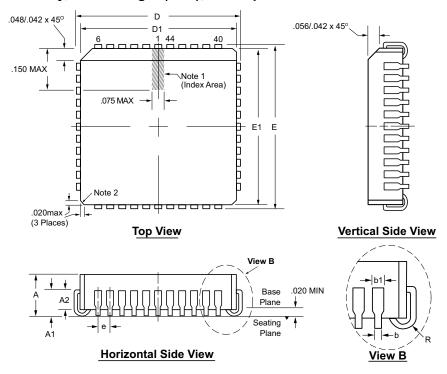
10.00x10.00mm body, 2.35mm height (max), 0.80mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note

 A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	е	L	L1	L2	θ
	MIN	1.95*	0.00	1.95	0.30	13.65*	9.80*	13.65*	9.80*		0.73			0 º
Dimension (mm)	NOM	-	-	2.00	-	13.90	10.00	13.90	10.00	0.80 BSC	0.88	1.95 REF	0.25 BSC	3.5°
(11111)	MAX	2.35	0.25	2.10	0.45	14.15*	10.20*	14.15*	10.20*		1.03			7°


JEDEC Registration MO-112, Variation AA-2, Issue B, Sep.1995.

Drawings not to scale.

^{*} This dimension is not specified in the JEDEC drawing.

44-Lead PLCC Package Outline (PJ)

.653x.653in body, .180in height (max), .050in pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging. Notes:

- 1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- Actual shape of this feature may vary.

Symbol		Α	A1	A2	b	b1	D	D1	Е	E1	е	R
	MIN	.165	.090	.062	.013	.026	.685	.650	.685	.650	.050 BSC	.025
Dimension (inches)	NOM	.172	.105	-	-	-	.690	.653	.690	.653		.035
()	MAX	.180	.120	.083	.021	.036 [†]	.695	.656	.695	.656		.045

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993. † This dimension differs from the JEDEC drawing. **Drawings not to scale.**

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (January 2020)

- Converted Supertex Doc # DSFP-HV66 to Microchip DS20005886A
- Removed "HVCMOS® Technology" from the Features section
- Changed the package marking format
- Updated the 44-lead PQFP PG M919 and 44-lead PLCC PJ M903 media types
- · Made minor changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u> </u>	-	<u>X</u> -	2	<u>X</u>	Exa	amples:	
Device	Package Options		Environmenta	l Media	Туре	a)	HV66PG-G:	32-Channel LCD Driver with Separate Backplane Output, 44-lead PQFP, 96/Tray
Device:	HV66	=	32-Channel LCD D Backplane Output	river with S	eparate	b)	HV66PJ-G:	32-Channel LCD Driver with Separate Backplane Output, 44-lead PLCC, 27/Tube
Packages:	PG	=	44-lead PQFP					
	PJ	=	44-lead PLCC					
Environmental:	G	=	Lead (Pb)-free/Rol-	lS-complia	nt Package			
Media Types:	(blank)	=	96/Tray for a PG Pa	ackage				
	(blank)	=	27/Tube for a PJ P	ackage				

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN:978-1-5224-5507-3

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Tel: 408-436-4270 Canada - Toronto

Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829 China - Shenzhen

Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 **Korea - Seoul** Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79 **Germany - Garching**

Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham

Tel: 44-118-921-5800 Fax: 44-118-921-5820