Ordering Information

	Package Option
Device	48-Lead LQFP 7.00x7.00mm body 1.60mm height (max) 0.50mm pitch
HV20822	HV20822FG-G

⁻G indicates package is RoHS compliant ('Green')

	<u> </u>
Parameter	Value
V _{DD} Logic power supply voltage	-0.5V to +15V
V _{PP} - V _{NN} Supply voltage	+225V
V _{PP} Positive high voltage supply	-0.5V to V _{NN} +225V
V _{NN} Negative high voltage supply	+0.5V to -225V
Logic input voltages	-0.5V to V _{DD} +0.3V
V _{SIG} Analog signal range	$V_{_{\mathrm{NN}}}$ to $V_{_{\mathrm{PP}}}$
Peak analog signal current/channel	3.0A
Storage temperature	-65°C to +150°C
Power dissipation	1.0W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

48-Lead LQFP (FG)
(top view)

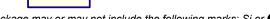
Product Marking

Top Marking
YYWW
HV20822FG
LLLLLLLL

Bottom Marking

CCCCCCC

YY = Year Sealed WW = Week Sealed


L = Lot Number

C = Country of Origin*

A = Assembler ID*

____ = "Green" Packaging

*May be part of top marking

Package may or may not include the following marks: Si or **\$48-Lead LQFP (FG)**

Recommended Operating Conditions

Sym	Parameter	Value
V _{PP}	Positive high voltage supply ¹	+50V to +110V
V _{NN}	Negative high voltage supply ¹	-10V to V _{PP} -220V
V _{DD}	Logic power supply voltage ¹	+4.75V to +12.6V
V _{IH}	High-level input voltage	V_{DD} -1.0V to V_{DD}
V _{IL}	Low-level input voltage	0V to 1.0V
V_{SIG}	Analog signal voltage peak-to-peak ²	V _{NN} +10V to V _{PP} -10V
T _A	Operating free air-temperature	0°C to 70°C

Notes:

- 1. Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
- 2. V_{SIG} must be $V_{NN} \le V_{SIG} \le V_{PP}$ or floating during power up/down transition.

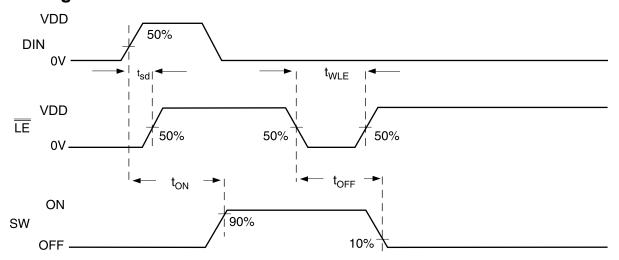
DC Electrical Characteristics (Over recommended operating conditions unless otherwise noted)

	B		C	+25°C		+70°C				
Sym	Parameter	min	max	min	typ	max	min	max	Units	Conditions
		-	30	-	26	32	-	40		$V_{SIG} = 0V, I_{SIG} = 5.0 \text{mA}, V_{PP} = 50V, V_{NN} = -170V$
R _{ons}	Small signal switch	-	25	-	22	27	-	35	Ω	$V_{SIG} = 0V, I_{SIG} = 200 \text{mA},$ $V_{PP} = 50V, V_{NN} = -170V$
OnS	on-resistance	-	25	-	22	27	-	30	32	$V_{SIG} = 0V, I_{SIG} = 5.0 \text{mA},$ $V_{PP} = 110V, V_{NN} = -110V$
		-	20	-	18	22	-	25		$V_{SIG} = 0V, I_{SIG} = 200 \text{mA},$ $V_{PP} = 110V, V_{NN} = -110V$
ΔR _{OnS}	Small signal switch on-resistance matching	-	20	-	5.0	20	-	20	%	$V_{SIG} = 0V, I_{SIG} = 5.0 \text{mA},$ $V_{PP} = 110V, V_{NN} = -110V$
R _{OnL}	Large signal switch on-resistance	-	-	-	15	-	-	-	Ω	V _{SIG} = 0V, I _{SIG} = 1.0mA
I _{SOL}	Switch-off leakage per switch	-	5.0	-	1.0	10	-	15	μA	$V_{SIG} = V_{PP} - 10V$ and $V_{NN} + 10V$
	DC offset switch-off	300	_	_	100	300	-	300	mV	R _L = 100KΩ
-	DC offset switch-on	500	-	-	100	500	-	500	IIIV	$R_L = 100 K\Omega$
I _{PPQ}	Pos. HV supply current	-	-	-	10	50	-	-		All SWs off
I _{NNQ}	Neg. HV supply current	-	-	_	-10	-50	-	_	μA	All SVVS OII
I _{PPQ}	Pos. HV supply current	-	-		10	50	-	-	μΑ	All SWs on 1 = 5.0mA
I _{NNQ}	Neg. HV supply current	-	-	-	-10	-50	-	-		All SWs on, I _{sw} = 5.0mA
-	Switch output peak current	-	3.0	-	3.0	2.0	-	2.0	Α	V _{SIG} duty cycle ≤ 0.1%
f _{sw}	Output switch frequency	-	-	-	-	50	-		KHz	Duty cycle = 50%
l _{PP}	I _{PP} supply current	-	8.1	-	-	8.8	-	10		V _{PP} = 50V, V _{NN} = -170V, all SWs
I _{NN}	I _{NN} supply current	-	-8.1	-	-	-8.8	-	-10	mA	turning on and off at 50KHz
l _{PP}	I _{PP} supply current	-	5.0	-	-	6.3	-	6.9	IIIA	V _{PP} = 110V, V _{NN} = -110V, all SWs
I _{NN}	I _{NN} supply current	-	-5.0	-	-	-6.3	-	-6.9		turning on and off at 50KHz
I _{DDQ}	Logic supply quiescent current	-	10	-	-	10	-	10	μA	All logic states are at DC
I _{DD}	Logic supply average current	-	2.0	-	-	2.0	-	2.0	mA	$D_{IN}1 = D_{IN}2 = 3.0MHz, \overline{LE} = high$

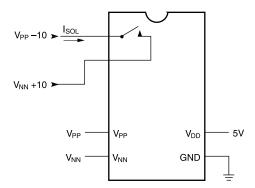
AC Electrical Characteristics (Over recommended operating conditions unless otherwise noted)

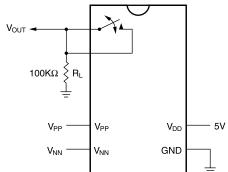
Sym	Parameter	0°C		+25°C		+70°C		Unito	Conditions	
		min	max	min	typ	max	min	max	Units	Conditions
t _{SIG(Off)}	Time to turn off V _{SIG} *	0	-	0	-	-	0	-	ns	
t _{WLE}	Time width of LE	150	-	150	_	-	150	_	ns	
t _{wdin}	Time width of D _{IN}	150	-	150	-	-	150	-	ns	
t _{sD}	Set up time before LE rises	150	-	150	-	-	150	-	ns	

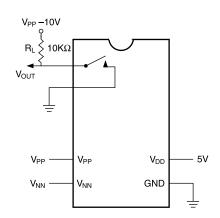
^{*} Time required for analog signal to turn off before output switch turns off.


AC Electrical Characteristics (cont.)

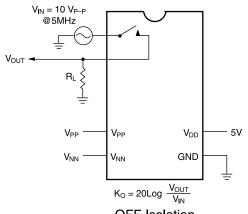
Cress	Baramatar	0 ^c	C	+25°C		+70°C		Units	Canditions	
Sym	Parameter	min	max	min	typ	max	min	max	Units	Conditions
t _{On}	Turn-on time	-	5.0	-	-	5.0	-	5.0	μs	$V_{SIG} = V_{PP} - 10V, R_{LOAD} = 10K\Omega$
t _{Off}	Turn-off time	-	5.0	-	-	5.0	-	5.0	μs	$V_{SIG} = V_{PP} - 10V, R_{LOAD} = 10K\Omega$
V	Off isolation	-30	-	-30	-33	-	-30	-	dB	f = 5.0MHz, 1.0KΩ/15pF Load
K _o	On isolation	-45	-	-45	-50	-	-45	-	dB	$f = 7.5MHz, R_{LOAD} = 50\Omega$
K _{CR}	Switch crosstalk	-45	-	-45	-	-	-45	-	dB	$f = 5.0MHz$, $R_{LOAD} = 50\Omega$
$C_{GS(Off)}$	Off-capacitance switch to GND	5.0	17	5.0	12	17	5.0	17	pF	V _{SIG} = 0V, 1.0MHz
C _{GS(On)}	On-capacitance switch to GND	25	50	25	38	50	25	50	pF	V _{SIG} = 0V, 1.0MHz
+V _{SPK}	Output voltage enike	-	-	-	4.0	-	-	-	V	
-V _{SPK}	Output voltage spike	_	-	-	-4.0	-	-	-	V	

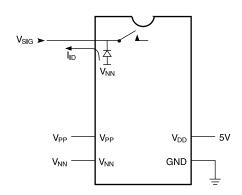

Logic Truth Table

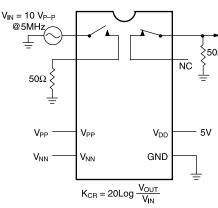

D _{IN} 2	D _{IN} 1	LE	SW0 to SW7	SW8 to SW15				
L	L	L	Off	Off				
L	Н	L	On	Off				
Н	L	L	Off	On				
Н	Н	L	On	On				
X	X	Н	Hold Previous State					


Logic Timing Waveform

Test Circuits

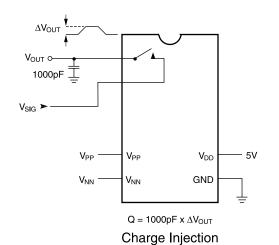


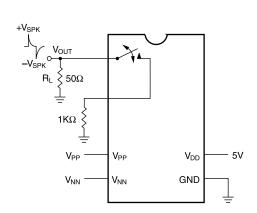



Switch OFF Leakage

DC Offset ON/OFF

 T_{ON}/T_{OFF} Test Circuit



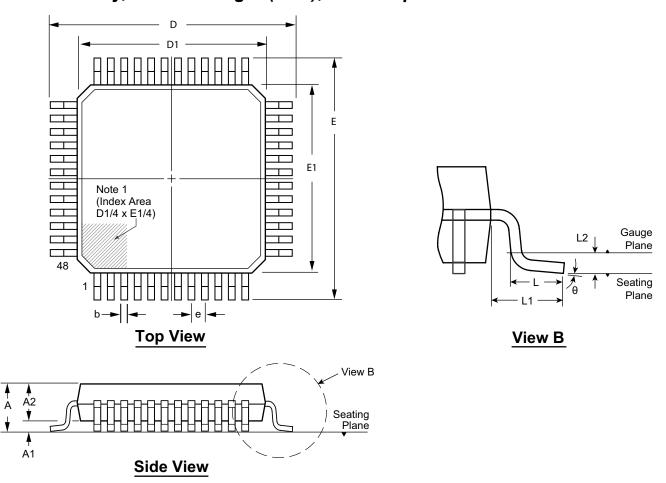


OFF Isolation

Isolation Diode Current

Crosstalk

Output Voltage Spike


Pin Description

Pin #	Function
1	VNN
2	N/C
3	VPP
4	N/C
5	D _{IN} 1
6	ĪĒ
7	D _{IN} 2
8	N/C
9	N/C
10	VDD
11	GND
12	N/C
13	N/C
14	SW15
15	SW15
16	SW14
17	SW14
18	SW13
19	SW13
20	SW12
21	SW12
22	SW11
23	SW11
24	N/C

Pin#	Function
25	SW10
26	SW10
27	SW9
28	SW9
29	SW8
30	SW8
31	SW7
32	SW7
33	SW6
34	SW6
35	SW5
36	SW5
37	SW4
38	N/C
39	SW4
40	N/C
41	SW3
42	SW3
43	SW2
44	SW2
45	SW1
46	SW1
47	SW0
48	SW0

48-Lead LQFP Package Outline (FG)

7.00x7.00mm body, 1.60mm height (max), 0.50mm pitch

Note:

 A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A 1	A2	b	D	D1	E	E1	е	L	L1	L2	θ	
	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*	0.45					0 º
Dimension (mm)	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00	0.50 BSC	0.60	1.00 REF	0.25 BSC	3.5°	
(11111)	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*	200	0.75			7 °	

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

Drawings are not to scale.

Supertex Doc. #: DSPD-48LQFPFG Version, D041309.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http://www.supertex.com.

©2009 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

^{*} This dimension is not specified in the JEDEC drawing.