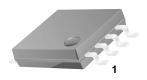


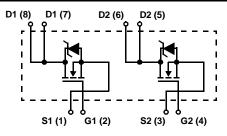
HUFA76413DK8T

N-Channel Logic Level UltraFET[®] Power MOSFET 60V, 4.8A, $56m\Omega$

General Description


These N-Channel power MOSFETs are manufactured using the innovative UltraFET® process. This advanced process technology achieves the lowest possible onresistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching convertors, motor drivers, relay drivers, low-voltage bus switches, and power management in portable and battery-operated products.

Applications


- · Motor and Load Control
- · Powertrain Management

Features

- 150°C Maximum Junction Temperature
- UIS Capability (Single Pulse and Repetitive Pulse)
- Ultra-Low On-Resistance $r_{DS(ON)} = 0.049\Omega$, $V_{GS} = 10V$
- Ultra-Low On-Resistance $r_{DS(ON)} = 0.056\Omega$, $V_{GS} = 5V$

SO-8

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	60	V
V_{GS}	Gate to Source Voltage	±16	V
	Drain Current		
	Continuous ($T_C = 25^{\circ}C$, $V_{GS} = 10V$)	5.1	Α
I_D	Continuous (T _C = 25°C, V _{GS} = 5V)	4.8	А
	Continuous ($T_C = 125^{\circ}C$, $V_{GS} = 5V$, $R_{\theta JA} = 228^{\circ}C/W$)	1	А
	Pulsed	Figure 4	А
E _{AS}	Single Pulse Avalanche Energy (Note 1)	260	mJ
	Power dissipation	2.5	W
P_{D}	Derate above 25°C	0.02	W/°C
T_J , T_{STG}	Operating and Storage Temperature	-55 to 150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance Junction to Ambient SO-8 (Note 2)	50	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient SO-8 (Note 3)	191	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient SO-8 (Note 4)	228	°C/W

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/

Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.

All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
76413DK8	HUFA76413DK8T	SO-8	330mm	12mm	2500 units

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Con	ditions	Min	Тур	Max	Units
Off Chara	cteristics						
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS}$	S = 0V	60	-	-	V
I	Zero Gate Voltage Drain Current	V _{DS} = 50V		-	1	1	^
IDSS	Zero Gate voltage Drain Current	$V_{GS} = 0V$	$T_A = 150^{\circ}C$	-	-	250	μΑ
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 16V$		-	1	±100	nA

On Characteristics

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	-	3	V
		$I_D = 5.1A, V_{GS} = 10V$	-	0.041	0.049	
r _{DS(ON)} Drain to Sour	Drain to Source On Resistance	$I_D = 4.8A, V_{GS} = 5V$ - 0	0.048	0.056	0	
		$I_D = 4.8A, V_{GS} = 5V$ $T_A = 150^{\circ}C$	-	0.091	0.106	22

Dynamic Characteristics

C _{ISS}	Input Capacitance	V 05V V	V _{DS} = 25V, V _{GS} = 0V, -f = 1MHz		620	-	pF
Coss	Output Capacitance				180	-	pF
C _{RSS}	Reverse Transfer Capacitance	1 - 1101112			30	-	pF
$Q_{g(TOT)}$	Total Gate Charge at 10V	$V_{GS} = 0V \text{ to } 10V$			18	23	nC
$Q_{g(5)}$	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$	$V_{DD} = 30V$	-	10	13	nC
$Q_{g(TH)}$	Threshold Gate Charge		$I_D = 4.8A$	-	0.6	0.8	nC
Q_{gs}	Gate to Source Gate Charge		$I_g = 1.0 \text{mA}$	-	1.8	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			1	5	-	nC

Switching Characteristics $(V_{GS} = 5V)$

t _{ON}	Turn-On Time		-	-	44	ns
t _{d(ON)}	Turn-On Delay Time		-	10	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_{D} = 1A$	-	19	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 5V$, $R_{GS} = 16\Omega$	-	45	-	ns
t _f	Fall Time		-	27	-	ns
t _{OFF}	Turn-Off Time		-	-	108	ns

Drain-Source Diode Characteristics

V _{SD} So	Source to Drain Diode Voltage	I _{SD} = 4.8A	-	-	1.25	V
	Source to Drain Diode voltage	I _{SD} = 2.4A	1.0	V		
t _{rr}	Reverse Recovery Time	$I_{SD} = 4.8A$, $dI_{SD}/dt = 100A/\mu s$	-	-	43	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 4.8A$, $dI_{SD}/dt = 100A/\mu s$	-	-	55	nC

- **Notes:**1: Starting $T_J = 25^{\circ}\text{C}$, L = 20mH, $I_{AS} = 5.1\text{A}$ 2: $R_{\theta JA}$ is 50°C/W when mounted on a 0.5 in² copper pad on FR-4 at 1 second.
 3: $R_{\theta JA}$ is 191°C/W when mounted on a 0.027 in² copper pad on FR-4 at 1000 seconds.
 4: $R_{\theta JA}$ is 228°C/W when mounted on a 0.006 in² copper pad on FR-4 at 1000 seconds.

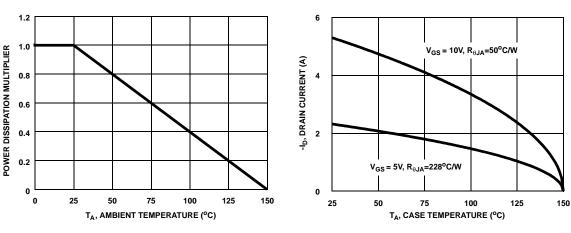


Figure 1. Normalized Power Dissipation vs Ambient Temperature

Typical Characteristics T_A = 25°C unless otherwise noted

Figure 2. Maximum Continuous Drain Current vs Case Temperature

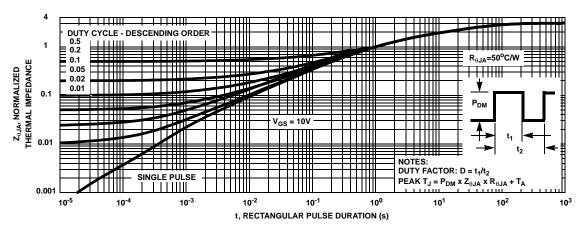


Figure 3. Normalized Maximum Transient Thermal Impedance

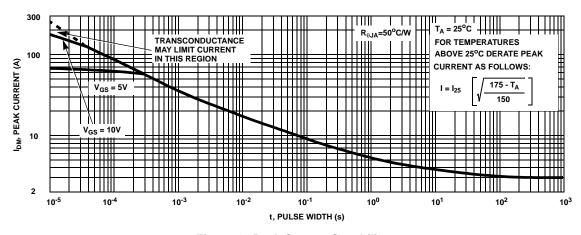
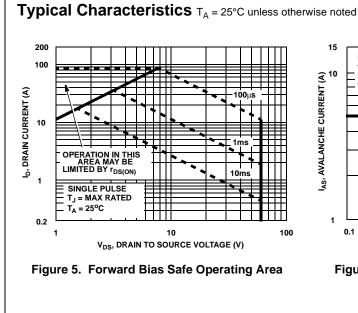



Figure 4. Peak Current Capability

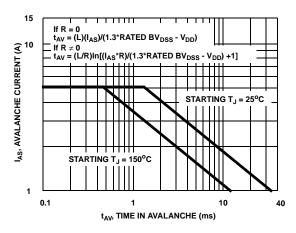
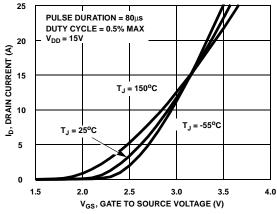



Figure 6. Unclamped Inductive Switching Capability

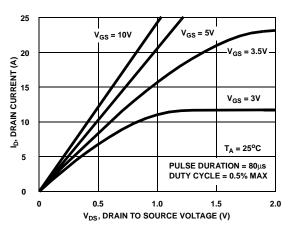
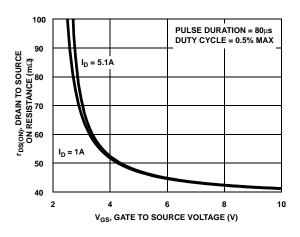



Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

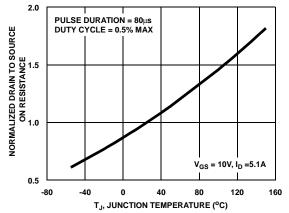


Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

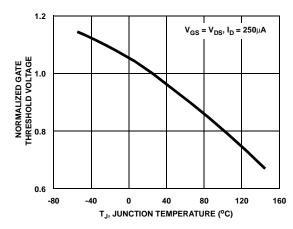


Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature

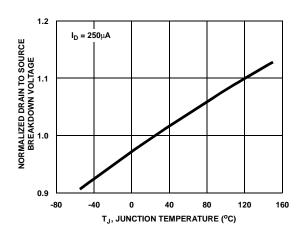


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

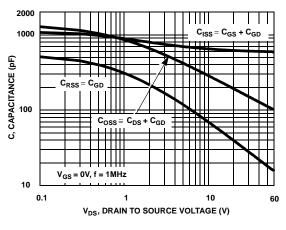


Figure 13. Capacitance vs Drain to Source Voltage

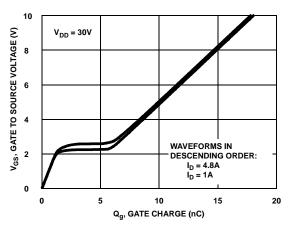


Figure 14. Gate Charge Waveforms for Constant Gate Currents

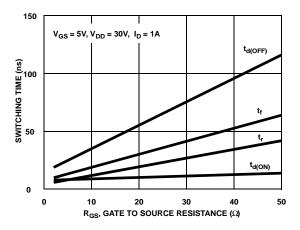


Figure 15. Switching Time vs Gate Resistance

Test Circuits and Waveforms

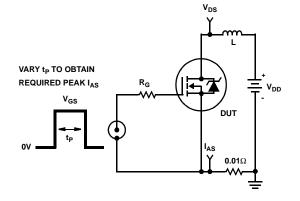


Figure 16. Unclamped Energy Test Circuit

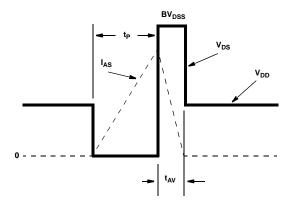


Figure 17. Unclamped Energy Waveforms

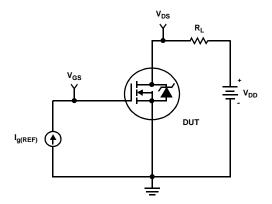


Figure 18. Gate Charge Test Circuit

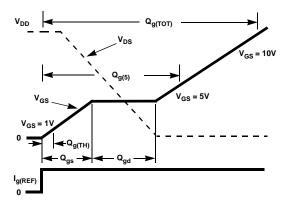


Figure 19. Gate Charge Waveforms

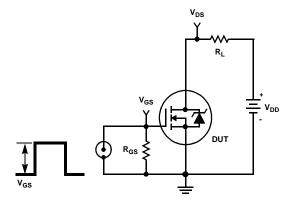


Figure 20. Switching Time Test Circuit

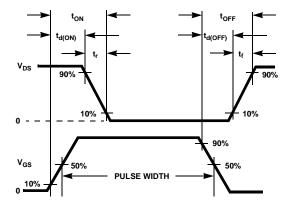


Figure 21. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}} \tag{EQ. 1}$$

In using surface mount devices such as the SO-8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 22 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 22 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.

$$R_{\Theta IA} = 103.2 - 24.3 \ln(Area)$$
 (EQ. 2)

The dual die SO-8 package introduces an additional thermal coupling resistance, $R_{\theta \rm B}$. Equation 3 describes $R_{\theta \rm B}$ as a function of the top copper mouting pad area.

$$R_{\Theta B} = 46.4 - 21.7 \ln(Area)$$
 (EQ. 3)

The thermal coupling resistance vs. copper area is also graphically depicted in Figure 22.

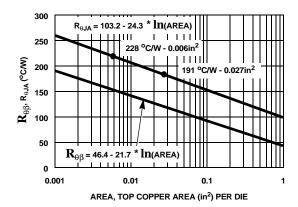
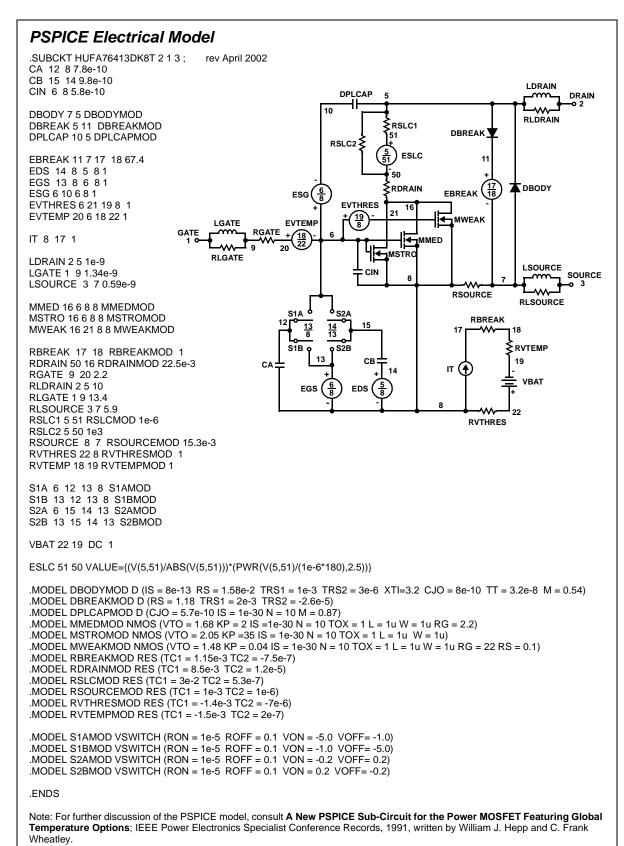
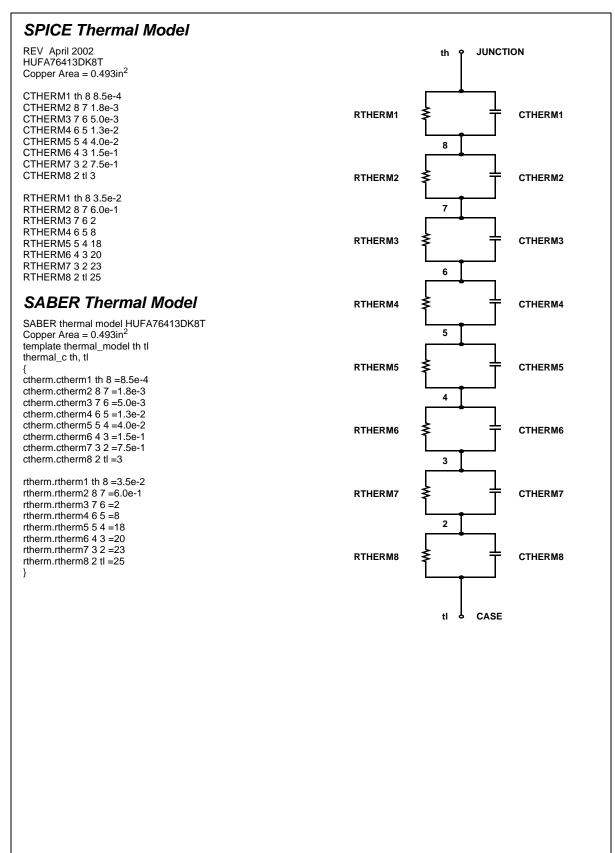




Figure 22. Thermal Resistance vs Mounting Pad Area


```
SABER Electrical Model
REV April 2002
template HUFA76413DK8T n2,n1,n3
electrical n2,n1,n3
var i iscl
dp..model dbodymod = (isl = 8e-13, rs = 1.58e-2, trs1 = 1e-3, trs2 = 3e-6, xti = 3.2, cjo = 8e-10, tt = 3.2e-8, m = 0.54)
dp..model dbreakmod = (rs = 1.18, trs1 = 2e-3, trs2 = -2.6e-5)
dp..model dplcapmod = (cjo = 5.7e-10, isl = 10e-30, nl = 10, m = 0.87)
m..model mmedmod = (type=_n, vto = 1.68, kp = 2, is = 1e-30, tox=1)
m..model mstrongmod = (type=_n, vto = 2.05, kp = 35, is = 1e-30, tox = 1)
m..model mweakmod = (type= n, vto = 1.48, kp = 0.04, is = 1e-30, tox = 1, rs=0.1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5.0, voff = -1.0)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -1.0, voff = -5.0)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.2, voff = 0.2)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.2)
                                                                                                              LDRAIN
                                                                     DPLCAP
                                                                                                                       DRAIN
                                                                 10
c.ca n12 n8 = 7.8e-10
                                                                                                             RLDRAIN
c.cb n15 n14 = 9.8e-10
                                                                                RSLC1
c.cin n6 n8 = 5.8e-10
                                                                  RSLC2
                                                                                  ISCL
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
                                                                                            DBREAK 3
                                                                                50
dp.dplcap n10 n5 = model=dplcapmod
                                                                               RDRAIN
                                                          ESG
                                                                                                   11
i.it n8 n17 = 1
                                                                                                             DBODY
                                                                     FVTHRFS
                                                                       \frac{19}{8}
                                                                                              MWEAK
                                         LGATE
                                                        EVTEMP
I.ldrain n2 n5 = 1e-9
                                                 RGATE
                                                           18
22
I.lgate n1 n9 = 1.34e-9
                                                                                              EBREAK
                                                                                  MMED
                                                        20
I.Isource n3 n7 = 0.59e-9
                                                                          ←MSTRO
                                         RLGATE
                                                                                                             LSOURCE
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
                                                                          CIN
                                                                                                                      SOURCE
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
                                                                                           RSOURCE
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
                                                                                                            RLSOURCE
res.rbreak n17 n18 = 1, tc1 = 1.15e-3, tc2 = -7.5e-7
                                                                                                 RBREAK
                                                            <u>13</u>
8
res.rdrain n50 n16 = 22.5e-3, tc1 = 8.5e-3, tc2 = 1.2e-5
                                                                                              17
res.rgate n9 n20 = 2.2
                                                                                                         ≷RVTEMP
                                                         S1B
res.rldrain n2 n5 = 10
                                                                          СВ
                                                                                                           19
res.rlgate n1 n9 = 13.4
                                                   CA
                                                                                            IT
                                                                               14
res.rlsource n3 n7 = 5.9
                                                                                                             VBAT
res.rslc1 n5 n51= 1e-6, tc1 = 3e-2, tc2 =5.3e-7
                                                                  8
                                                            EGS
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 15.3e-3, tc1 = 1e-3, tc2 = 1e-6
res.rvtemp n18 n19 = 1, tc1 = -1.5e-3, tc2 = 2e-7
                                                                                                 RVTHRES
res.rvthres n22 n8 = 1, tc1 = -1.4e-3, tc2 = -7e-6
spe.ebreak n11 n7 n17 n18 = 67.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/180))** 2.5))
```


TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FACT™	ImpliedDisconnect™	PACMAN™	SPM™
ActiveArray™	FACT Quiet Series™	ISOPLANAR™	POPTM	Stealth™
Bottomless™	FAST [®]	LittleFET™	Power247™	SuperSOT™-3
CoolFET™	FASTr™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	FRFET™	MicroPak™	QFET™	SuperSOT™-8
DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic™
E ² CMOS™	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
EnSigna™	I ² C™	OCX^{TM}	RapidConfigure™	UHC™
Across the board.	. Around the world.™	OCXPro™	RapidConnect™	UltraFET [®]
The Power Francl	hise™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX^{TM}
Programmable Ad	ctive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com