Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	40	-	-	V
	Drain to Source Leakage Current	V_{DS} =40V, T_{J} =25°C	-	-	1	μA
IDSS		$V_{GS} = 0V$ $T_J = 175^{\circ}C(Note 4)$	-	-	1	mA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$	-	-	±100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250uA	2.0	3.13	4.0	V
	0	$I_{\rm D} = 80$ A, $T_{\rm J} = 25^{\rm o}$ C	2.0	1.0	1.2	V mΩ
r _{DS(on)}	Drain to Source On Resistance		-		-	-
r _{DS(on)} Dynam	Drain to Source On Resistance	$I_{\rm D} = 80$ A, $T_{\rm J} = 25^{\rm o}$ C	-	1.0 1.63	1.2	mΩ mΩ
r _{DS(on)} Dynam C _{iss}	Drain to Source On Resistance	$I_D = 80A,$ $T_J = 25^{\circ}C$ $V_{GS} = 10V$ $T_J = 175^{\circ}C(Note 4)$	-	1.0 1.63 12700	1.2 1.96	mΩ mΩ pF
r _{DS(on)} Dynam C _{iss} C _{oss}	Drain to Source On Resistance ic Characteristics Input Capacitance Output Capacitance	$I_{\rm D} = 80$ A, $T_{\rm J} = 25^{\rm o}$ C	-	1.0 1.63 12700 3195	1.2	mΩ mΩ pF pF
r _{DS(on)} Dynam C _{iss} C _{oss} C _{rss}	Drain to Source On Resistance ic Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	$ \begin{array}{ c c c c c } & I_{D} = 80A, & T_{J} = 25^{\circ}C \\ \hline V_{GS} = 10V & T_{J} = 175^{\circ}C(Note \ 4) \\ \hline \end{array} \\ \hline \\ & V_{DS} = 25V, \ V_{GS} = 0V, \\ f = 1MHz & - \\ \end{array} $	-	1.0 1.63 12700 3195 493	1.2 1.96	mΩ mΩ pF
r _{DS(on)} Dynam	Drain to Source On Resistance ic Characteristics Input Capacitance Output Capacitance	$I_{D} = 80A, \qquad T_{J} = 25^{\circ}C$ $V_{GS} = 10V \qquad T_{J} = 175^{\circ}C(Note 4)$ $V_{DS} = 25V, V_{GS} = 0V,$ $f = 1MHz$ $f = 1MHz$	-	1.0 1.63 12700 3195	1.2 1.96 - -	mΩ mΩ pF pF
r _{DS(on)} Dynam C _{iss} C _{oss} C _{rss}	Drain to Source On Resistance ic Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	$ \begin{array}{ c c c c c } & I_{D} = 80A, & T_{J} = 25^{\circ}C \\ \hline V_{GS} = 10V & T_{J} = 175^{\circ}C(Note \ 4) \\ \hline \end{array} \\ \hline \\ & V_{DS} = 25V, \ V_{GS} = 0V, \\ f = 1MHz & - \\ \end{array} $	-	1.0 1.63 12700 3195 493	1.2 1.96 - -	mΩ mΩ pF pF

Switching Characteristics

Gate to Source Gate Charge

Gate to Drain "Miller" Charge

t _{on}	Turn-On Time		-	-	56	ns
t _{d(on)}	Turn-On Delay Time		-	16	-	ns
t _r	Rise Time	V _{DD} = 20V, I _D = 80A,	-	19.5	-	ns
t _{d(off)}	Turn-Off Delay Time	V_{DD} = 20V, I _D = 80A, V _{GS} = 10V, R _{GS} = 1.5Ω	-	61	-	ns
t _f	Fall Time		-	46	-	ns
t _{off}	Turn-Off Time		-	-	171	ns

-

_

59

25

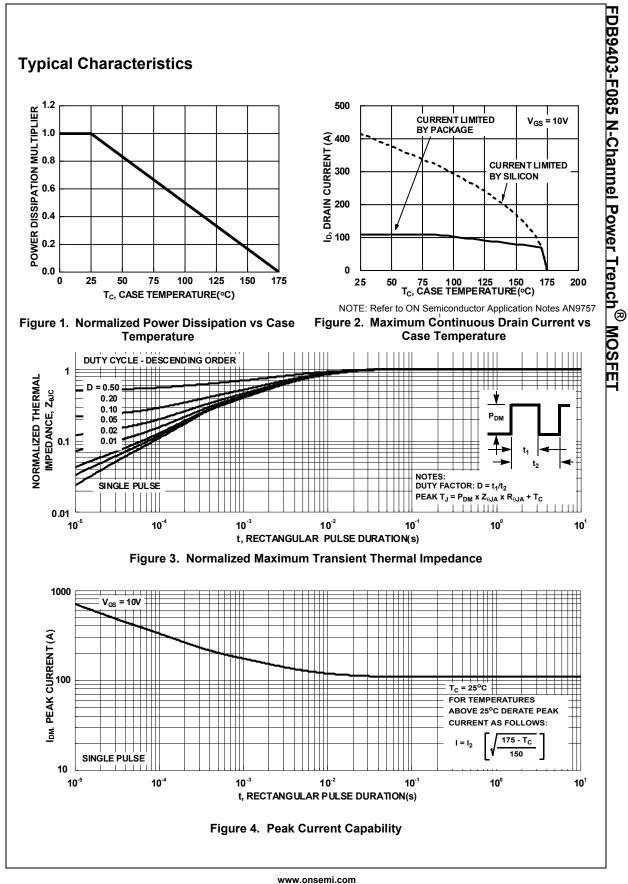
-

-

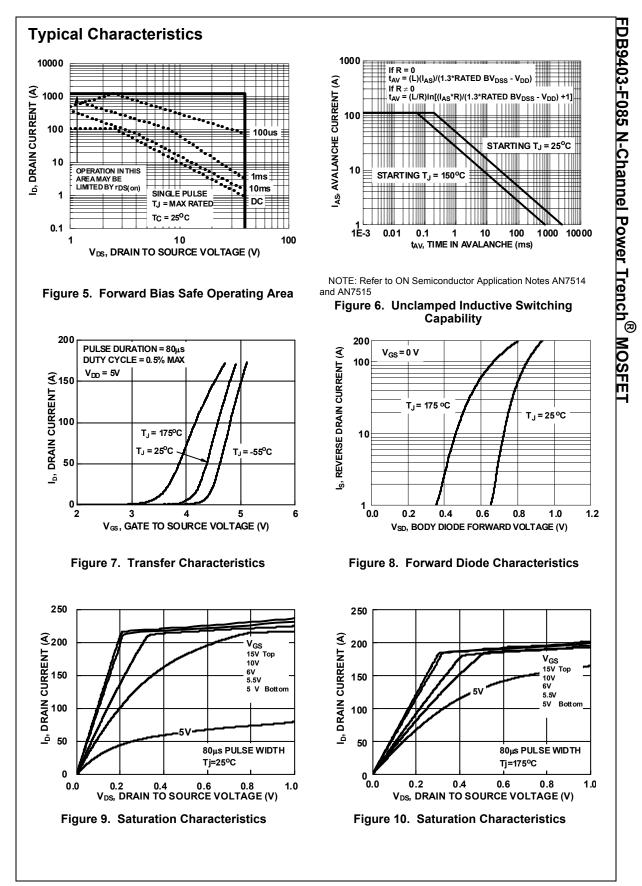
nC

nC

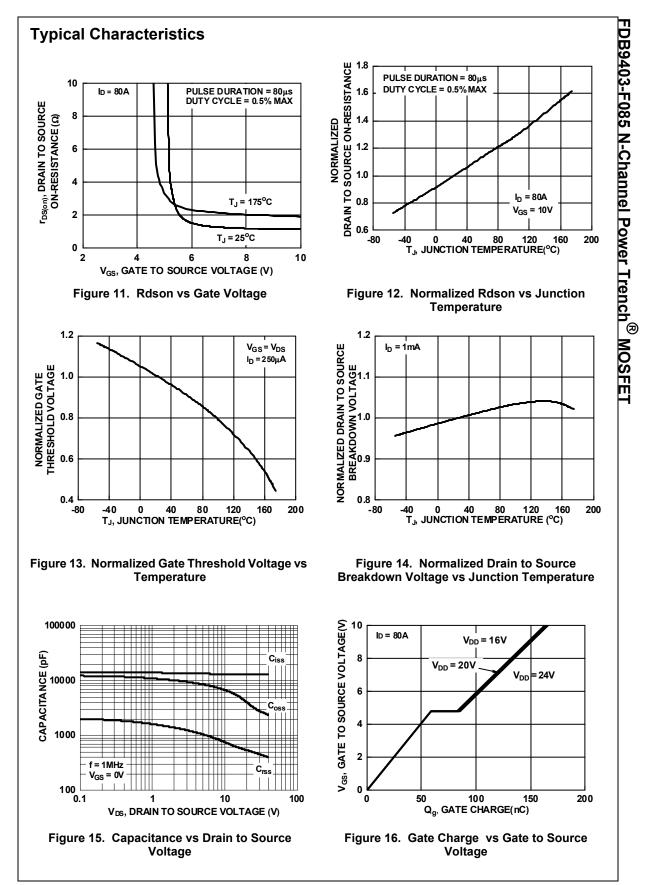
Drain-Source Diode Characteristics


V	Source to Drain Diode Voltage	I _{SD} = 35A, V _{GS} = 0V	-	-	0.85	V
V_{SD}		I _{SD} = 15A, V _{GS} = 0V	-	-	0.80	V
T _{rr}	Reverse Recovery Time	- I _F = 80A, dI _{SD} /dt = 100A/μs	-	96	125	ns
Q _{rr}	Reverse Recovery Charge		-	149	194	nC

Notes:


Q_{gs}

Q_{gd}


4: The maximum value is specified by design at TJ = 175°C. Product is not tested to this condition in production.

3

www.onsemi.com 4

www.onsemi.com 5

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Semiconductor Components Industries, LLC