Vishay Siliconix

New Product

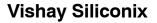
ABSOLUTE MAXIMUM RATINGS

0.3 to +6 V
V+ + 0.3 V)
. $\pm 50~mA$
$\pm200~\text{mA}$
55 to 150°C
1295 mW
240°C

Notes:

- Signals on NC, NO, or COM or IN exceeding V+ will be clamped by inter-

- Signals on NC, NO, or COM or IN exceeding V+ will be clamped by inter nal diodes. Limit forward diode current to maximum current ratings. All leads welded or soldered to PC Board.

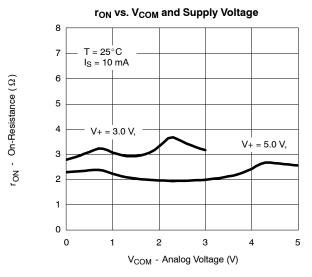

 Derate 16.2 mW/°C above 70°C

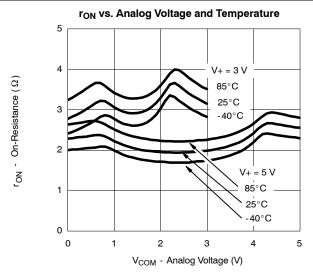
 Manual soldering with an iron is not recommended for leadless components. The QFN is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection

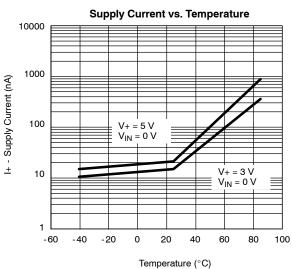
Parameter		Test Conditions Otherwise Unless Specified $V+=3~V,~\pm10\%,~V_{IN}=0.4~or~2.0~V^e$	Temp ^a	Limits -40 to 85°C			
	Symbol			Min ^b	Typc	Max ^b	Unit
Analog Switch	•						
Analog Signal Range ^d	V _{NO} , V _{NC} , V _{COM}		Full	0		V+	٧
On-Resistance	r _{ON}	V+ = 2.7 V, V _{COM} = 0.2 V/1.5 V I _{NO} , I _{NC} = 10 mA	Room Full		3.0	5 6.5	
r _{ON} Flatness	r _{ON} Flatness	$V_{+} = 2.7 \text{ V}$ $V_{COM} = 0 \text{ to V+, I}_{NO}, I_{NC} = 10 \text{ mA}$	Room			1.6	Ω
r _{ON} Match Between Channels	Δr_{ON}		Room			0.4	
Switch Off Leakage Current	I _{NO(off)} , I _{NC(off)}	V+ = 3.3 V, V _{NO} , V _{NC} = 0.3 V/3 V V _{COM} = 3 V/0.3 V	Room Full	-1 -10	0.01	1 10	nA
	I _{COM(off)}		Room Full	-1 -10	0.01	1 10	
Channel-On Leakage Current	I _{COM(on)}	$V_{+} = 3.3 \text{ V}, V_{NO}, V_{NC} = V_{COM} = 0.3 \text{ V/3 V}$	Room Full	-1 -10	0.01	1 10	
Digital Control							
Input High Voltage	V _{INH}		Full	2.0			v
Input Low Voltage	V _{INL}		Full			0.4	*
Input Capacitance	C _{in}		Full		5		pF
Input Current	I _{INL} or I _{INH}	$V_{IN} = 0$ or $V+$	Full	1		1	μΑ
Dynamic Characteristics							
Turn-On Time	t _{ON}	- V_{NO} or V_{NC} = 2.0 V, R_L = 50 Ω , C_L = 35 pF	Room Full		28	53 59	
Turn-Off Time	t _{OFF}		Room Full		13	38 38	ns
Break-Before-Make Time	t _d	V_{NO} or V_{NC} = 2.0 V, R_L = 50 Ω , C_L = 35 pF	Full	1			
Charge Injection ^d	Q_{INJ}	$C_L = 1 \text{ nF, } V_{GEN} = 0 \text{ V, } R_{GEN} = 0 \Omega$	Room		38		рС
Off-Isolation ^d	OIRR	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$	Room		-78		dB
Crosstalk ^d	X _{TALK}		Room		-82		ub
N _O , N _C Off Capacitance ^d	C _{NO(off)}		Room		15		pF
	C _{NC(off)}	V _{IN} = 0 or V+, f = 1 MHz	Room		15		
Channel-On Capacitance ^d	C _{NO(on)}	VIIV - 0 01 V 1, 1 - 1 WILL	Room		49		P
	C _{NC(on)}		Room		45		
Power Supply							
Power Supply Current	l+	V _{IN} = 0 or V+	Full		0.01	1.0	μΑ

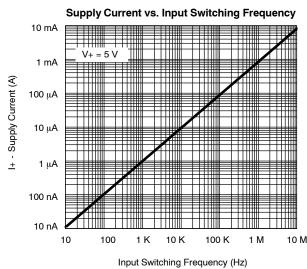
Notes:

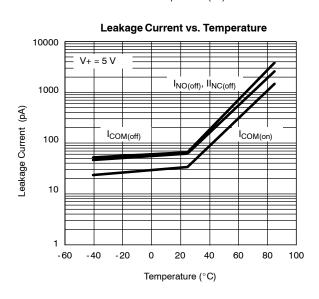
- Room = 25° C, Full = as determined by the operating suffix.
- Typical values are for design aid only, not guaranteed nor subject to production testing.
- The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- Guarantee by design, nor subjected to production test. V_{IN} = input voltage to perform proper function.

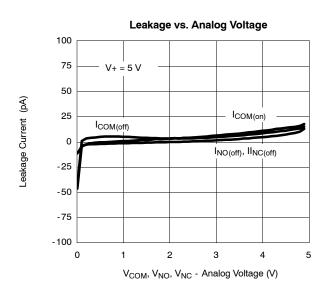


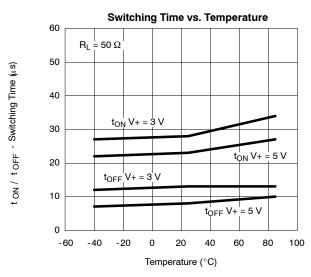



·

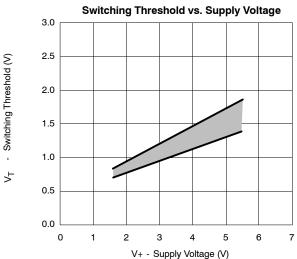

New Product

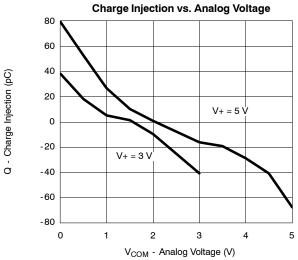

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)



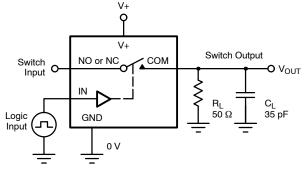

Document Number: 72387 S-31650—Rev. A, 18-Aug-03

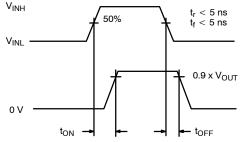
Vishay Siliconix


New Product



TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)





TEST CIRCUITS

Switch Output

Logic

C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

FIGURE 1. Switching Time

New Product

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

FIGURE 5. Break-Before-Make Interval

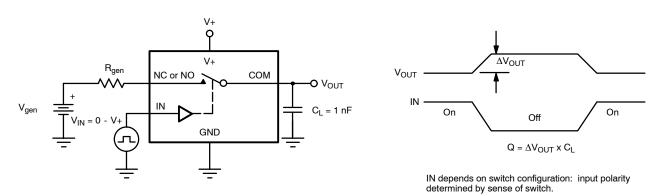


FIGURE 2. Charge Injection

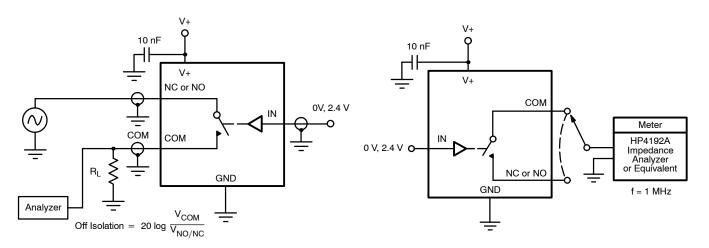


FIGURE 3. Off-Isolation

FIGURE 4. Channel Off/On Capacitance

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08