

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	24			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.023		V/°C	Reference to 25°C, I_D = 5mA \odot
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.80	1.0	mΩ	V _{GS} = 10V, I _D = 160A
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} = V _{GS} , I _D = 250μA
gfs	Forward Trans conductance	190			S	V _{DS} = 15V, I _D = 160A
R _G	Gate Resistance		3.0		Ω	
I _{DSS}	Drain-to-Source Leakage Current			20		$V_{DS} = 24V, V_{GS} = 0V$
				250	μA	V _{DS} =24V, V _{GS} = 0V V _{DS} =19V,V _{GS} = 0V,T _J =125°C
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-200	ПА	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Total Gate Charge		180	252		I _D = 75A
Gate-to-Source Charge		47			V _{DS} = 12V V _{GS} = 10V©
Gate-to-Drain Charge		58		nC	V _{GS} = 10V⑤
Total Gate Charge Sync. (Qg - Qgd)		122			
Turn-On Delay Time		19			V _{DD} = 16V
Rise Time		240		20	I _D = 160A
Turn-Off Delay Time		86		115	R _G = 2.7Ω
Fall Time		93			V _{GS} = 10V⑤
Input Capacitance		7700			$V_{GS} = 0V$
Output Capacitance		3380			V _{DS} = 19V
Reverse Transfer Capacitance		1930		рF	<i>f</i> = 1.0MHz, See Fig. 5
Effective Output Capacitance (Energy Related)		4780			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 19V$
Effective Output Capacitance (Time Related)		4970			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 19V^{\circ}$
	Gate-to-Source ChargeGate-to-Drain ChargeTotal Gate Charge Sync. (Qg - Qgd)Turn-On Delay TimeRise TimeTurn-Off Delay TimeFall TimeInput CapacitanceOutput CapacitanceReverse Transfer CapacitanceEffective Output Capacitance (Energy Related)	Gate-to-Source Charge —— Gate-to-Drain Charge —— Total Gate Charge Sync. (Qg - Qgd) —— Turn-On Delay Time —— Rise Time —— Turn-Off Delay Time —— Fall Time —— Input Capacitance —— Qutput Capacitance —— Effective Output Capacitance (Energy Related) ——	Gate-to-Source Charge—47Gate-to-Drain Charge—58Total Gate Charge Sync. (Qg - Qgd)—122Turn-On Delay Time—19Rise Time—240Turn-Off Delay Time—86Fall Time—93Input Capacitance—7700Output Capacitance—3380Reverse Transfer Capacitance (Energy Related)—4780	Gate-to-Source Charge—47—Gate-to-Drain Charge—58—Total Gate Charge Sync. $(Q_g - Q_{gd})$ —122—Turn-On Delay Time—19—Rise Time—240—Turn-Off Delay Time—86—Fall Time—93—Input Capacitance—7700—Output Capacitance—3380—Reverse Transfer Capacitance (Energy Related)—4780—	Gate-to-Source Charge — 47 — Gate-to-Drain Charge — 58 — Total Gate Charge Sync. (Qg - Qgd) — 122 — Turn-On Delay Time — 19 — Rise Time — 240 — Turn-Off Delay Time — 86 — Fall Time — 93 — Input Capacitance — 3380 — Qutput Capacitance — 1930 — Reverse Transfer Capacitance (Energy Related) — 4780 —

	Parameter	Min.	Тур.	Max.	Units	C	onditions
	Continuous Source Current			1000		MOSFET sy	rmbol
Is	(Body Diode)			429 ①	^	showing the	
1	Pulsed Source Current	Pulsed Source Current	1640	A	integral reve	erse	
I _{SM}	(Body Diode) ②			1040		p-n junction	diode.
V_{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C,I _S	= 160A,V _{GS} = 0V (5)
ı			71	107		Т <u></u> = 25°С	$V_{DD} = 20V$
t _{rr}	Reverse Recovery Time	—— 74 110	ns	<u>T_ = 125°C</u>	I _F = 160A,		
0	Bayaraa Baaayary Charga		83	120		<u>T_J = 25°C</u>	di/dt = 100A/µs ⑤
Q _{rr}	Reverse Recovery Charge		92	140	nC	<u>T_ = 125°C</u>	
I _{RRM}	Reverse Recovery Current		2.0		Α	T _J = 25°C	
t _{on}	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 240A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- 3 Limited by T_{Jmax}, starting T_J = 25°C, L = 0.018mH, R_G = 25 Ω , I_{AS} = 160A, V_{GS} =10V. Part not recommended for use above this value.
- $\label{eq:ISD} \ensuremath{\textcircled{\sc sc star}}\ I_{SD} \leq 160A, \ di/dt \leq 600A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^\circ C.$
- (5) Pulse width \leq 400µs; duty cycle \leq 2%.
- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- (9) R_{θ} is measured at T_J approximately 90°C.

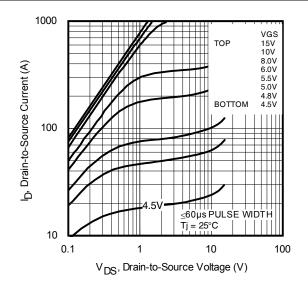


Fig. 1 Typical Output Characteristics

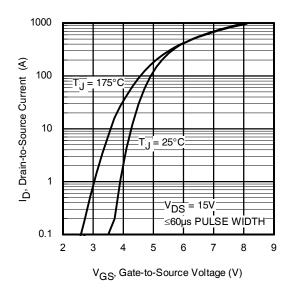


Fig. 3 Typical Transfer Characteristics

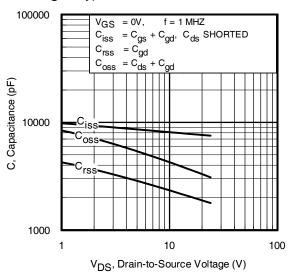


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

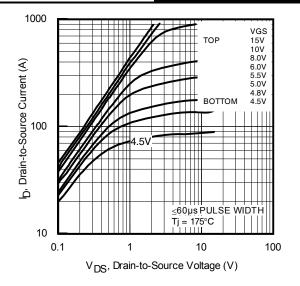
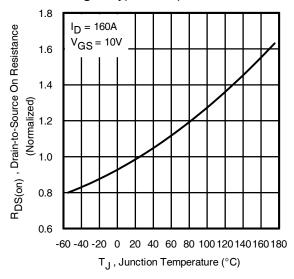
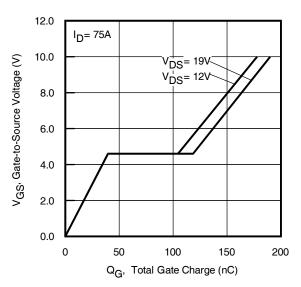
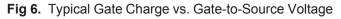
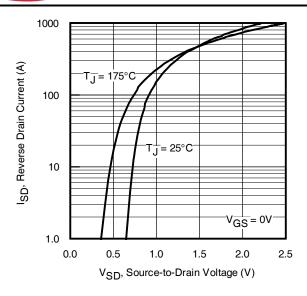
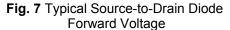





Fig. 2 Typical Output Characteristics





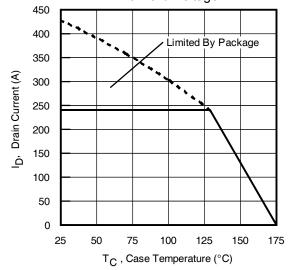
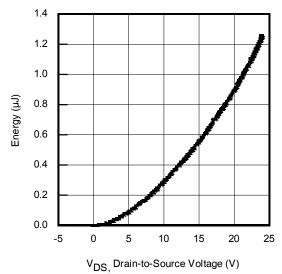



Fig 9. Maximum Drain Current vs. Case Temperature

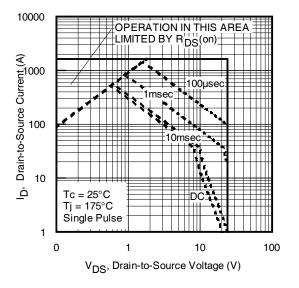


Fig 8. Maximum Safe Operating Area

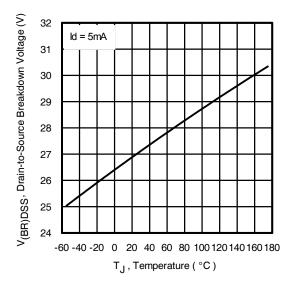


Fig 10. Drain-to-Source Breakdown Voltage

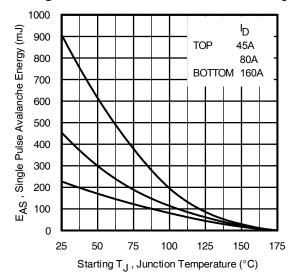


Fig 12. Maximum Avalanche Energy vs. Drain Current

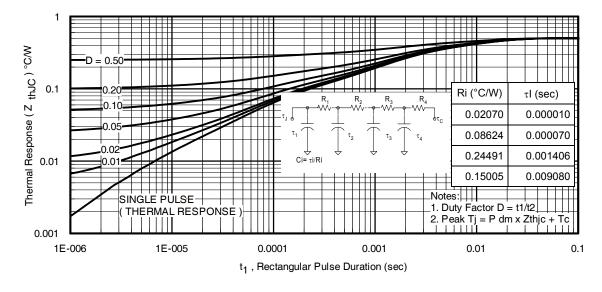


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

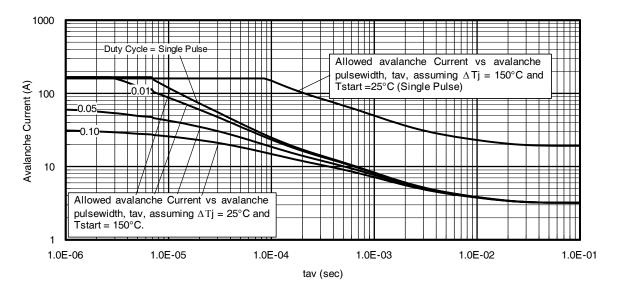
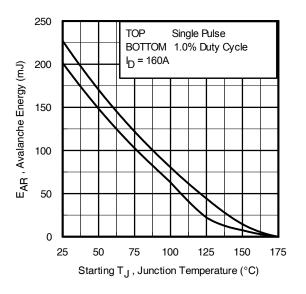
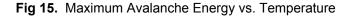



Fig 14. Avalanche Current vs. Pulse width



Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).
 - tav = Average time in avalanche.
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} \textbf{P}_{D \ (ave)} &= 1/2 \ (\ 1.3 \cdot \textbf{BV} \cdot \textbf{I}_{av}) = \Delta T / \ \textbf{Z}_{thJC} \\ \textbf{I}_{av} &= 2 \Delta T / \ [1.3 \cdot \textbf{BV} \cdot \textbf{Z}_{th}] \\ \textbf{E}_{AS \ (AR)} &= \textbf{P}_{D \ (ave)} \cdot \textbf{t}_{av} \end{split}$$

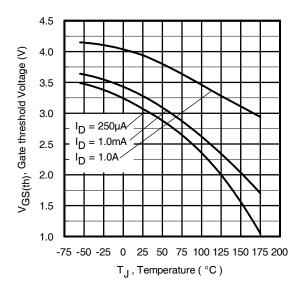
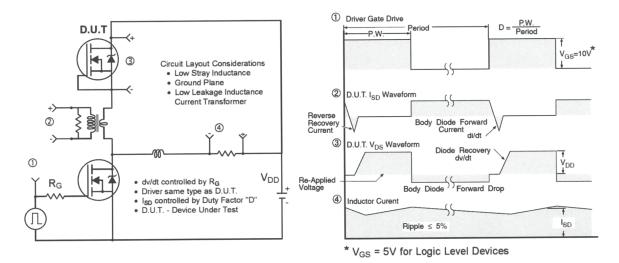
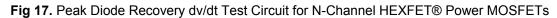




Fig 16. Threshold Voltage vs. Temperature

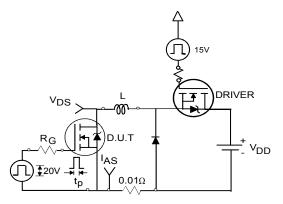


Fig 18a. Unclamped Inductive Test Circuit

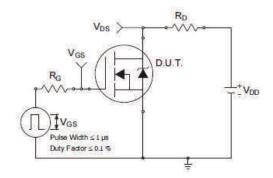


Fig 19a. Switching Time Test Circuit

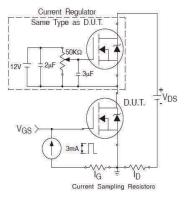


Fig 20a. Gate Charge Test Circuit

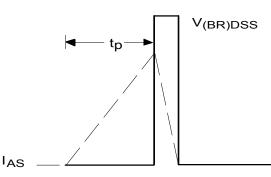
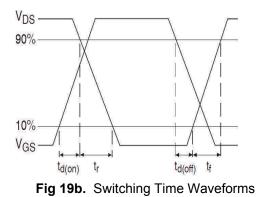
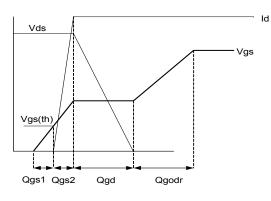
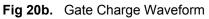
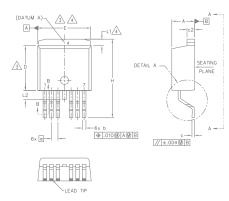
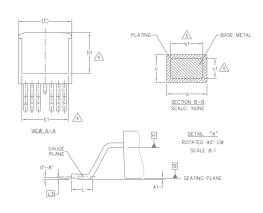
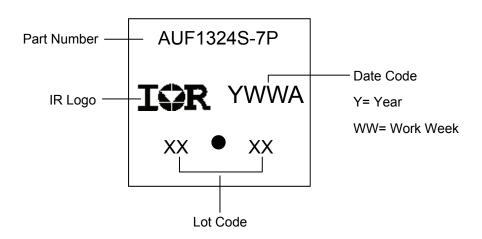





Fig 18b. Unclamped Inductive Waveforms





D²Pak - 7 Pin Package Outline (Dimensions are shown in millimeters (inches))



Y M	DIMENSIONS					
B O	MILLIM	ETERS	INC	INCHES		
L	MIN.	MAX.	MIN.	MAX.	N O T E S	
А	4.06	4.83	.160	.190		
A1	-	0.254		.010		
b	0.51	0.99	.020	.036		
b1	0.51	0.89	.020	.032	5	
С	0.38	0.74	.015	.029		
с1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	7.42	.270	.292	4	
Е	9.65	10.54	.380	.415	3,4	
E1	6.22	8.48	.245	.334	4	
е	1.27	BSC	.050 BSC			
Н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	-	1.68	-	.066	4	
L2	_	1.78	-	.070		
L3	0.25	0.25 BSC .010 BSC				

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- (3.) DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB. EXCEPT FOR DIMS. E, E1 & D1.

D²Pak - 7 Pin Part Marking Information

Qualification Information

		Automotive (per AEC-Q101)				
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sensitivity Level		D ² -Pak 7 Pin	MSL1			
	Machine Model	Class M4 [†] AEC-Q101-002				
ESD	Human Body Model	Class H3A [†] AEC-Q101-001				
	Charged Device Model	Class C3 [†] AEC-Q101-005				
RoHS Compliant		Yes				

† Highest passing voltage.

Revision History

Date	Comments		
9/30/2015	 Updated datasheet with corporate template Corrected ordering table on page 1. Updated typo on GFS on page 2. 		

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.