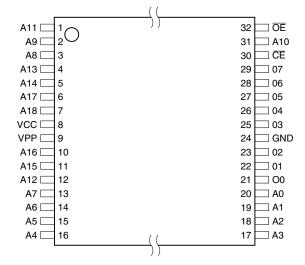
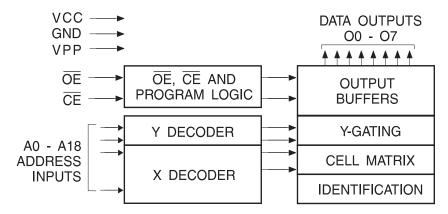

2. Pin Configurations

Pin Name	Function
A0 - A18	Addresses
O0 - O7	Outputs
CE	Chip Enable
ŌĒ	Output Enable


2.1 32-lead PDIP Top View

2.3 32-lead PLCC Top View


2.2 32-lead TSOP Top View

3. Switching Considerations

Switching between active and standby conditions via the Chip Enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed datasheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F high frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and Ground terminals of the device, as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized, again connected between the V_{CC} and Ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

4. Block Diagram

5. Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground2.0V to +7.0V
Voltage on A9 with Respect to Ground2.0V to +14.0V
V _{PP} Supply Voltage with Respect to Ground2.0V to +14.0V

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Modes

Mode/Pin	CE	ŌĒ	Ai	V _{PP}	Outputs
Read	V_{IL}	V_{IL}	Ai	X ⁽¹⁾	D _{OUT}
Output Disable	Х	V _{IH}	X	Х	High Z
Standby	V _{IH}	Х	X	Х	High Z
Rapid Program ⁽²⁾	V _{IL}	V _{IH}	Ai	V _{PP}	D _{IN}
PGM Verify	Х	V _{IL}	Ai	V _{PP}	D _{OUT}
PGM Inhibit	V _{IH}	V _{IH}	X	V_{PP}	High Z
Product Identification ⁽⁴⁾	V _{IL}	V _{IL}	$A9 = V_{H}^{(3)}$ $A0 = V_{IH} \text{ or } V_{IL}$ $A1 - A18 = V_{IL}$	х	Identification Code

- Notes: 1. X can be V_{IL} or V_{IH} .
 - 2. Refer to Programming Characteristics
 - 3. $V_H = 12.0 \pm 0.5V$.
 - 4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}) , except A9 which is set to V_H and A0 which is toggled low (V_{IL}) to select the Manufacturer's Identification byte and high (V_{IH}) to select the Device Code byte.

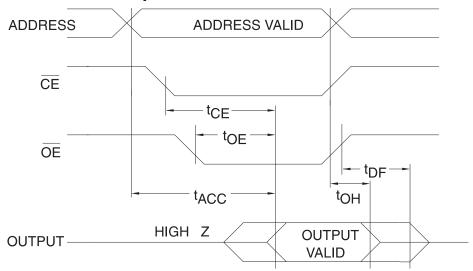
DC and AC Operating Conditions for Read Operation

	AT27C040-70	AT27C040-90
Industrial Operating Temperature (Case)	-40°C - 85°C	-40°C - 85°C
V _{CC} Power Supply	5V ± 10%	5V ±10%

DC and Operating Characteristics for Read Operation

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V \text{ to } V_{CC}$		±1	μΑ
I _{LO}	Output Leakage Current	V _{OUT} = 0V to V _{CC}		±5	μΑ
I _{PP1} ⁽²⁾	V _{PP} ⁽¹⁾ Read/Standby Current	$V_{PP} = V_{CC}$		10	μΑ
	V (1) Chandley Cymrant	I_{SB1} (CMOS), $\overline{CE} = V_{CC} \pm 0.3V$		100	μΑ
I _{SB}	V _{CC1} ⁽¹⁾ Standby Current	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} + 0.5V		1	mA
I _{CC}	V _{CC} Active Current	$f = 5 \text{ MHz}, I_{OUT} = 0 \text{ mA}, \overline{CE} = V_{IL}$		30	mA
V _{IL}	Input Low Voltage		-0.6	0.8	٧
V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V

1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}

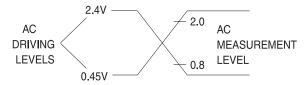

2. V_{PP} may be connected directly to V_{CC} , except during programming. The supply current would then be the sum of I_{CC} and I_{PP}

9. AC Characteristics for Read Operation

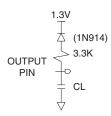
			AT27C040				
			-	70	-90		
Symbol	Parameter	Condition	Min	Max	Min	Max	Units
t _{ACC} ⁽¹⁾	Address to Output Delay	CE = OE = V _{IL}		70		90	ns
t _{CE} ⁽¹⁾	CE to Output Delay	OE = V _{IL}		70		90	ns
t _{OE} ⁽¹⁾	OE to Output Delay	CE = V _{IL}		30		35	ns
t _{DF} ⁽¹⁾	OE or CE High to Output Float, Whichever Occurred First			20		20	ns
t _{OH}	Output Hold from Address, \overline{CE} or \overline{OE} , Whichever Occurred First				0		ns

Note: 1. See AC Waveforms for Read Operation

10. AC Waveforms for Read Operation⁽¹⁾

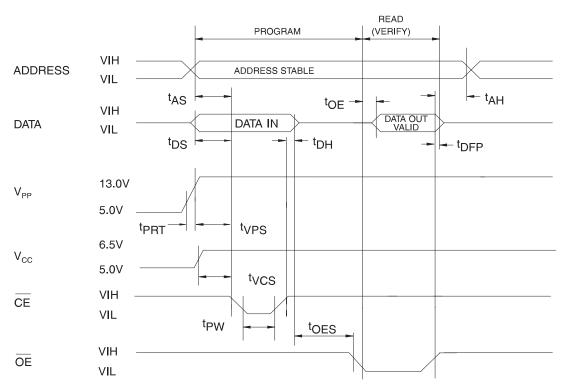

Notes: 1. Timing measurement references are 0.8V and 2.0V. Input AC drive levels are 0.45V and 2.4V, unless otherwise specified.

- 2. $\overline{\text{OE}}$ may be delayed up to t_{CE} t_{OE} after the falling edge of $\overline{\text{CE}}$ without impact on t_{CE} .
- 3. $\overline{\text{OE}}$ may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
- 4. This parameter is only sampled and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.



11. Input Test Waveforms and Measurement Levels

12. Output Test Load


13. Pin Capacitance

 $f = 1 \text{ MHz}, T = 25^{\circ} C^{(1)}$

Symbol	Тур	Max	Units	Conditions
C _{IN}	4	8	pF	$V_{IN} = 0V$
C _{OUT}	8	12	pF	V _{OUT} = 0V

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

14. Programming Waveforms⁽¹⁾

Notes: 1. The Input Timing Reference is 0.8V for $V_{\rm IL}$ and 2.0V for $V_{\rm IH}$.

- 2. t_{OE} and t_{DFP} are characteristics of the device but must be accommodated by the programmer.
- 3. When programming the AT27C040 a 0.1 μ F capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

15. DC Programming Characteristics

 $T_A = 25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25V$, $V_{PP} = 13.0 \pm 0.25V$

			Lin	nits	
Symbol	Parameter	Test Conditions	Min	Max	Units
I _{LI}	Input Load Current	$V_{IN} = V_{IL}, V_{IH}$		±10	μΑ
V _{IL}	Input Low Level		-0.6	0.8	V
V _{IH}	Input High Level		2.0	V _{CC} + 0.7	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output High Voltage	I _{OH} = -400 μA	2.4		V
I _{CC2}	V _{CC} Supply Current (Program and Verify)			40	mA
I _{PP2}	V _{PP} Supply Current	CE = V _{IL}		20	mA
V _{ID}	A9 Product Identification Voltage		11.5	12.5	V

16. AC Programming Characteristics

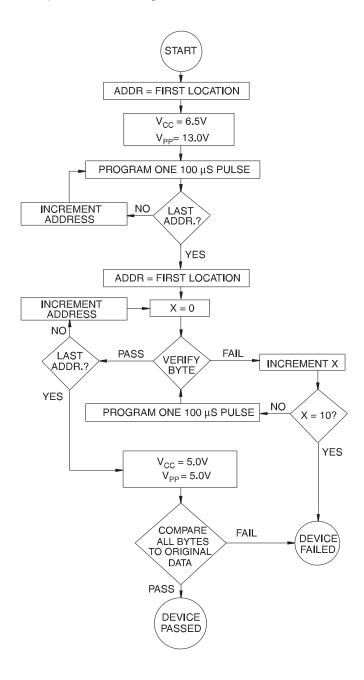
 $T_A = 25 \pm 5$ °C, $V_{CC} = 6.5 \pm 0.25$ V, $V_{PP} = 13.0 \pm 0.25$ V

			Lir		
Symbol	Parameter	Test Conditions ⁽¹⁾	Min	Max	Units
t _{AS}	Address Setup Time		2		μs
t _{OES}	OE Setup Time		2		μs
t _{DS}	Data Setup Time	Input Rise and Fall Times: (10% to 90%) 20 ns	2		μs
t _{AH}	Address Hold Time	(1570 to 5070) 25 110	0		μs
t _{DH}	Data Hold Time	Input Pulse Levels:	2		μs
t _{DFP}	OE High to Output Float Delay ⁽²⁾	0.45V to 2.4V	0	130	ns
t _{VPS}	V _{PP} Setup Time	Input Timing Reference Level:	2		μs
t _{VCS}	V _{CC} Setup Time	0.8V to 2.0V	2		μs
t _{PW}	CE Program Pulse Width ⁽³⁾	Output Timing Reference Level:	95	105	μs
t _{OE}	Data Valid from $\overline{OE}^{(2)}$	0.8V to 2.0V		150	ns
t _{PRT}	V _{PP} Pulse Rise Time During Programming		50		ns

Notes: 1. V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}

17. Atmel's AT27C040 Integrated Product Identification Code

		Pins								
Codes	Α0	07	O6	O 5	04	О3	O2	01	00	Hex Data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device Type	1	0	0	0	0	1	0	1	1	0B


AT27C040

^{2.} This parameter is only sampled and is not 100% tested. Output Float is defined as the point where data is no longer driven – see timing diagram.

^{3.} Program Pulse width tolerance is 100 μ sec \pm 5%.

18. Rapid Programming Algorithm

A 100 μs \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and V_{PP} is raised to 13.0V. Each address is first programmed with one 100 μs \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μs pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. V_{PP} is then lowered to 5.0V and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

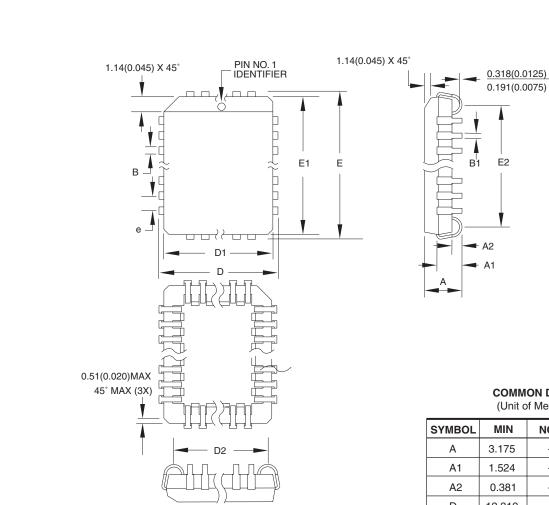
19. Ordering Information

19.1 Standard Package

	I _{CC} (mA)				
t _{ACC} (ns)	Active	Standby	Ordering Code	Package	Operation Range
			AT27C040-70JI	32J	Industrial
70	30	0.1	AT27C040-70PI	32P6	(-40° C to 85° C)
			AT27C040-70TI	32T	(-40 0 10 85 0)
			AT27C040-90JI	32J	Industrial
90	30	0.1	AT27C040-90PI	32P6	
			AT27C040-90TI	32T	(-40° C to 85° C)

Note:

Not recommended for new designs. Use Green package option.


19.2 Green Package Option (Pb/Halide-free)

I _{CC} (mA)		(mA)			
t _{ACC} (ns)	Active	Standby	Ordering Code	Package	Operation Range
			AT27C040-70JU	32J	Industrial
70	30	0.1	AT27C040-70PU	32P6	
			AT27C040-70TU	32T	(-40° C to 85° C)
			AT27C040-90JU	32J	Industrial
90	30	0.1	AT27C040-90PU	32P6	
		AT27C040-90TU	32T	(-40° C to 85° C)	

Package Type		
32J	32-lead, Plastic J-leaded Chip Carrier (PLCC)	
32P6	32-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)	
32T	32-lead, Plastic Thin Small Outline Package (TSOP)	

20. Package Information

20.1 32J - PLCC

Notes:

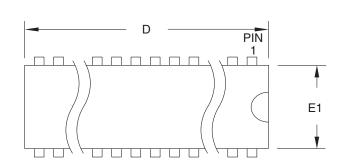
- 1. This package conforms to JEDEC reference MS-016, Variation AE.
- Dimensions D1 and E1 do not include mold protrusion.
 Allowable protrusion is .010"(0.254 mm) per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
- 3. Lead coplanarity is 0.004" (0.102 mm) maximum.

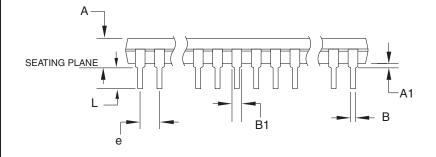
COMMON DIMENSIONS

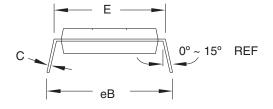
(Unit of Measure = mm)

	(Offic of Micasure = Illin)				
	SYMBOL	MIN	NOM	MAX	NOTE
	Α	3.175	_	3.556	
	A1	1.524	_	2.413	
	A2	0.381	_	_	
	D	12.319	_	12.573	
ſ	D1	11.354	_	11.506	Note 2
	D2	9.906	_	10.922	
	Е	14.859	_	15.113	
	E1	13.894	_	14.046	Note 2
	E2	12.471	_	13.487	
	В	0.660	_	0.813	
	B1	0.330	_	0.533	
ľ	е		1.270 TYF)	

10/04/01


2325 Orchard Parkway San Jose, CA 95131 TITLE
32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC)


DRAWING NO. REV. 32J B

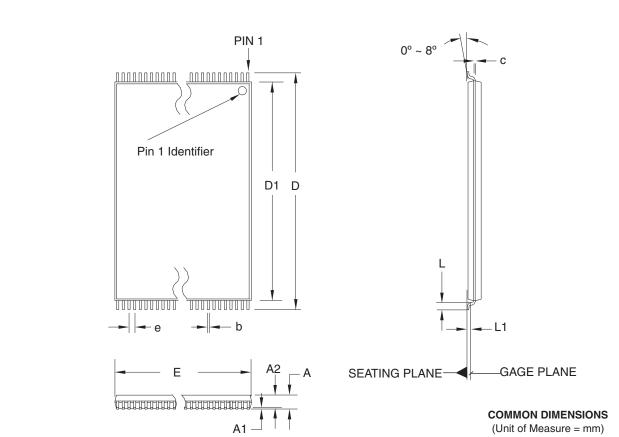


20.2 32P6 - PDIP

Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion.

Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").

COMMON DIMENSIONS


(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	4.826	
A1	0.381	_	1	
D	41.783	_	42.291	Note 1
E	15.240	_	15.875	
E1	13.462	_	13.970	Note 1
В	0.356	_	0.559	
B1	1.041	_	1.651	
L	3.048	_	3.556	
С	0.203	-	0.381	
еВ	15.494	_	17.526	
е	2.540 TYP			

09/28/01

		DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	32P6 , 32-lead (0.600"/15.24 mm Wide) Plastic Dual Inline Package (PDIP)	32P6	В

20.3 32T - TSOP

Notes:

- 1. This package conforms to JEDEC reference MO-142, Variation BD.
- 2. Dimensions D1 and E do not include mold protrusion. Allowable protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side.
- 3. Lead coplanarity is 0.10 mm maximum.

(0)				
SYMBOL	MIN	NOM	MAX	NOTE
Α	-	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	19.80	20.00	20.20	
D1	18.30	18.40	18.50	Note 2
Е	7.90	8.00	8.10	Note 2
L	0.50	0.60	0.70	
L1	0.25 BASIC			
b	0.17	0.22	0.27	
С	0.10	_	0.21	
е	0.50 BASIC			

10/18/01

		DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	32T , 32-lead (8 x 20 mm Package) Plastic Thin Small Outline Package, Type I (TSOP)	32T	В

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support eprom@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.