

AP2821

Pin Configuration

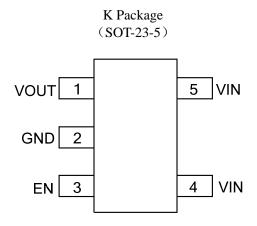


Figure 2. Pin Configuration of AP2821 (Top View)

Pin Descriptions

Pin No.	Name	Descriptions	
1	VOUT	Switch Output Voltage	
2	GND	Ground	
3	EN	Chip Enable Control Input, Active High	
4, 5	VIN	Supply Input Pin	

AP2821

Functional Block Diagram

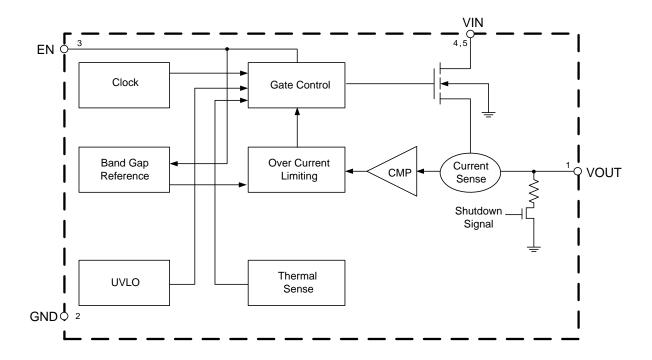
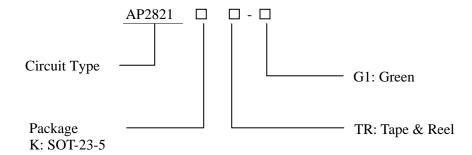



Figure 3. Functional Block Diagram of AP2821

AP2821

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
SOT-23-5	-40 to 85°C	AP2821KTR-G1	G4E	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

AP2821

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage	V_{IN}	6.0	V
Operating Junction Temperature Range	$T_{\mathtt{J}}$	150	°C
Storage Temperature Range	T_{STG}	-65 to 150	$^{\circ}\mathrm{C}$
Lead Temperature (Soldering,10 Seconds)	T_{LEAD}	260	°C
Thermal Resistance (Junction to Ambient)	$ heta_{ m JA}$	235	°C/W
ESD (Machine Model)		200	V
ESD (Human Body Model)		2000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{IN}	2.7	5.5	V
Ambient Operation Temperature Range	T_{A}	-40	85	°C

AP2821

Electrical Characteristics

(V_{IN}=5.0V, C_{IN}=4.7 μ F, C_{OUT}=4.7 μ F, Typical T_A=25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	$V_{\rm IN}$		2.7		5.5	V
Switch On Resistance	R _{DS(ON)}	V _{IN} =5V, I _{OUT} =0.5A		120	140	mΩ
Current Limit	I_{LIMIT}	V _{OUT} =4.0V	1.5	2.0	2.8	A
Supply Current	I_{SUPPLY}	V _{IN} =5V, R _{LOAD} Open		35	65	μА
Fold-back Short Current	I_{SHORT}	V _{OUT} =0V		1.5		A
Shutdown Supply Current	$I_{SHUTDOWN}$	V _{EN} =0V, Shutdown Mode		0.1	1	μА
Output Leakage Current	$I_{LEAKAGE}$	$V_{EN}=0V$, $V_{OUT}=0V$		0.1	1	μА
Enable High Voltage	$V_{\rm ENH}$	Enable Logic High	2.0		6.0	V
Enable Low Voltage	V_{ENL}	Enable Logic Low	0		1.2	V
Enable Pin Input Current	$I_{\rm EN}$	Force 0V to 5.0V at EN Pin	0		1.0	μА
Under Voltage Lockout Threshold Voltage	V _{UVLO}	V _{IN} Increasing from 0V	2.2	2.5	2.7	V
Under Voltage Hysteresis	$V_{\rm UVLOHY}$			0.2		V
Reverse Current	I _{REVERSE}	V _{EN} =0V, V _{OUT} >V _{IN}		0.1	1.0	μА
Shutdown Pull Low Resistance	R _{DISCHARGE}	V _{EN} is disable		100	250	Ω
Output Turn-on Time	$t_{\rm ON}$	From Enable Active to 90% of Output, R_L =10 Ω		1.9		ms
Thermal Shutdown Temperature	T_{OTSD}			145		°C
Thermal Shutdown Hysteresis	T_{HYOTSD}			20		
Thermal Resistance (Junction to Case)	θ_{JC}			70		°C/W

AP2821

Typical Performance Characteristics

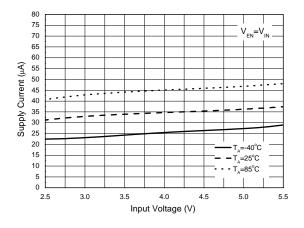


Figure 4. Supply Current vs. Input Voltage

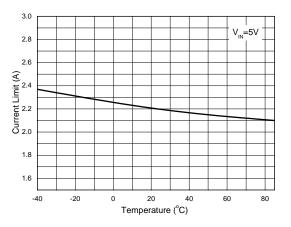


Figure 5. Current Limit vs. Temperature

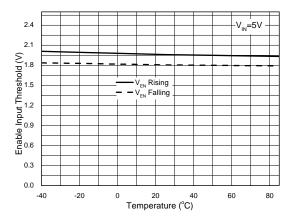


Figure 6. Enable Input Threshold vs. Temperature

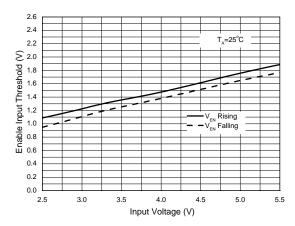
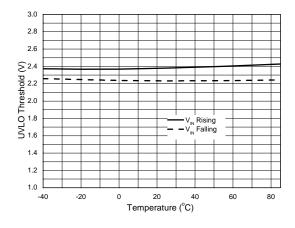
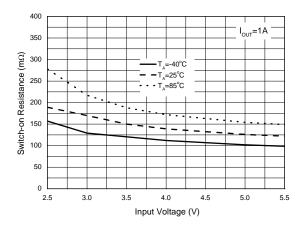



Figure 7. Enable Input Threshold vs. Input Voltage

AP2821



Segul 2

UVLO | No Load — V_{IN} Rising — V_{IN} Falling — V_{IN}

Figure 8. UVLO Threshold Voltage vs. Temperature

Figure 9. UVLO Function

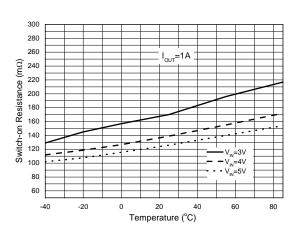


Figure 10. Switch-on Resistance vs. Input Voltage

Figure 11. Switch-on Resistance vs. Temperature

AP2821

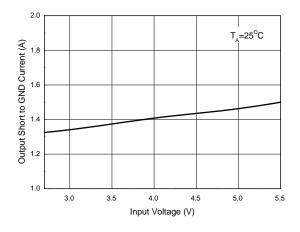


Figure 12. Output Short to GND Current vs. Input Voltage

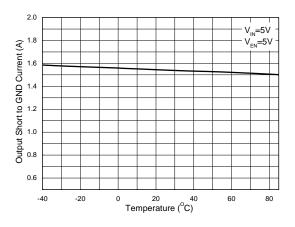


Figure 13. Output Short to GND Current vs. Temperature

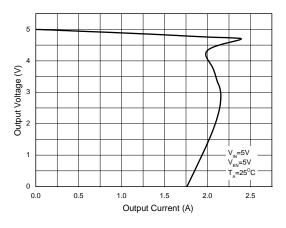


Figure 14. Output Voltage vs. Output Current

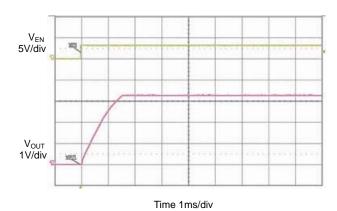


Figure 15. Switch Turn-on and Rise Time (V_{IN} =3.3V, C_{OUT} =4.7 μ F, No Load)

AP2821

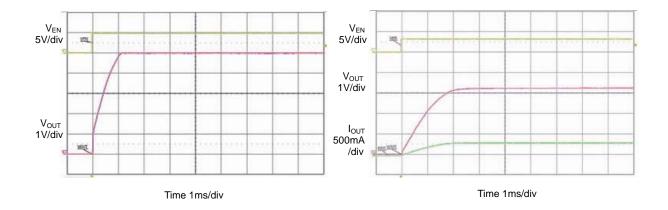


Figure 16. Switch Turn-on and Rise Time (V_{IN} =5.0V, C_{OUT} =4.7 μ F, No Load)

Figure 17. Switch Turn-on and Rise Time (V_{IN}=3.3V, C_{OUT}=4.7 μ F, R_L=10 Ω)

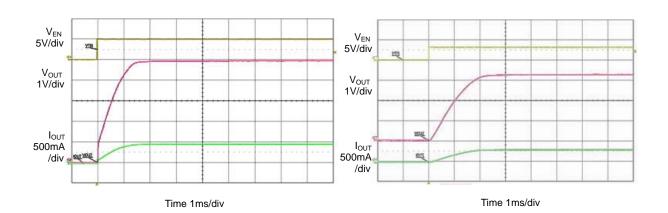


Figure 18. Switch Turn-on and Rise Time (V_{IN}=5.0V, C_{OUT}=4.7 μ F, R_L=10 Ω)

Figure 19. Switch Turn-on and Rise Time $(V_{IN}=3.3V,~C_{OUT}=100\mu F,~R_L=10\Omega)$

AP2821

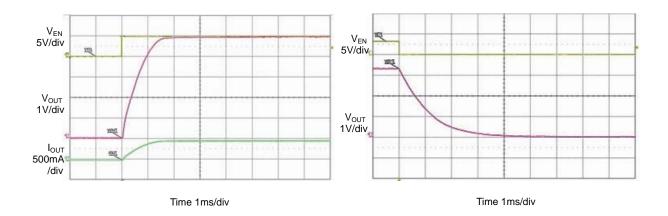


Figure 20. Switch Turn-on and Rise Time (V_{IN}=5.0V, C_{OUT}=100 μ F, R_L=10 Ω)

Figure 21. Switch Turn-off and Fall Time (V_{IN} =3.3V, C_{OUT} =4.7 μ F, No Load)

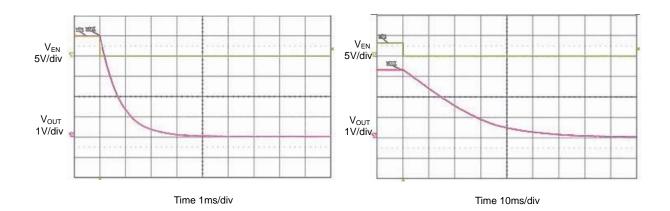


Figure 22. Switch Turn-off and Fall Time (V_{IN} =5.0V, C_{OUT} =4.7 μ F, No Load)

Figure 23. Switch Turn-off and Fall Time (V_{IN} =3.3V, C_{OUT} =100 μ F, No Load)

AP2821

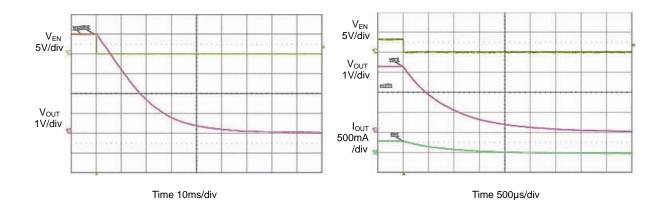


Figure 24. Switch Turn-off and Fall Time (V_{IN} =5.0V, C_{OUT} =100 μ F, No Load)

Figure 25. Switch Turn-off and Fall Time (V_{IN} =3.3V, C_{OUT} =100 μ F, R_L =10 Ω)

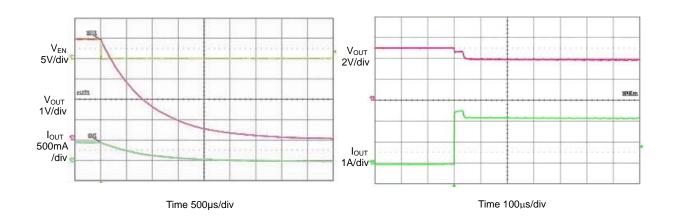
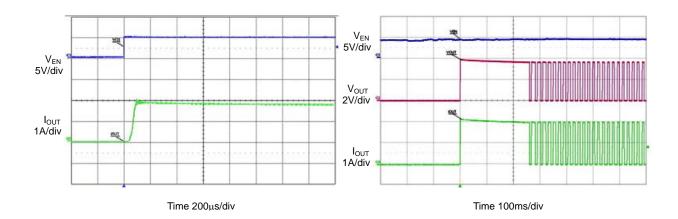


Figure 26. Switch Turn-off and Fall Time (V_{IN}=5.0V, C_{OUT}=100 μ F, R_L=10 Ω)

Figure 27. Resistance Load Inrush Response (C_{OUT} =4.7 μ F, R_L =1.65 Ω)

AP2821



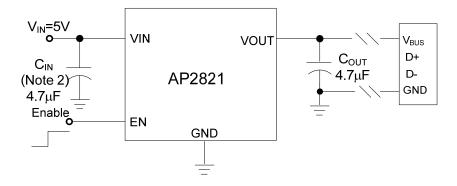
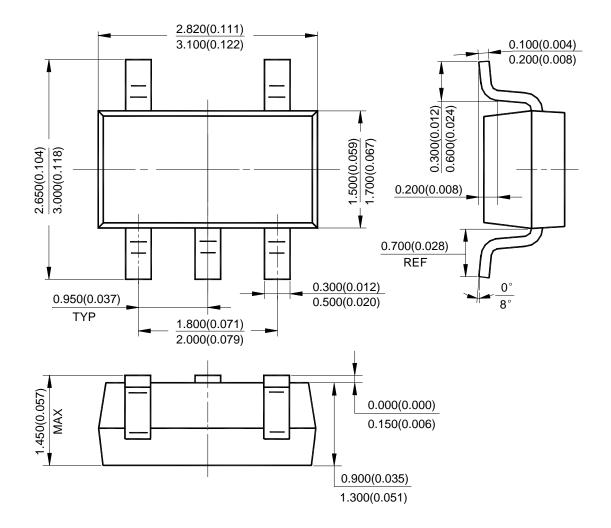

Figure 28. Short-circuit Current, Device Enable into Short $(V_{IN}=5.0V, C_{OUT}=4.7\mu F)$

Figure 29. Thermal Shutdown Response (VIN=5.0V, C_{OUT} =4.7 μ F, R_L =1.65 Ω)

AP2821

Typical Application

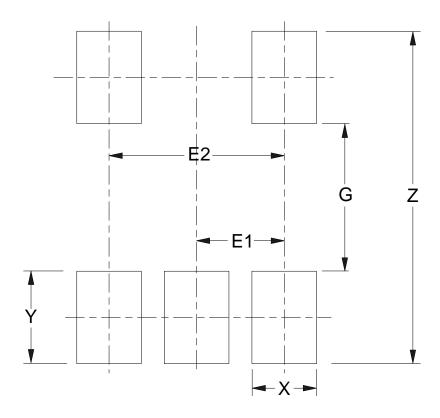
Note 2: $4.7\mu F$ input capacitor is enough in most application cases. If the PCB trace of power rail to $V_{\rm IN}$ is long, larger input capacitor is necessary.


Figure 30. AP2821 Typical Application

AP2821

Mechanical Dimensions

SOT-23-5 Unit: mm(inch)



AP2821

Mounting Pad Layout

SOT-23-5

Dimensions	Z	G	X	Y	E1	E2
Dimensions	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.600/0.142	1.600/0.063	0.700/0.028	1.000/0.039	0.950/0.037	1.900/0.075

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD (Shanghai) Micro-electronics Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, P. R.C. Tel: +86-021-2416-2266, Fax: +86-021-2416-2277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave. 1.S., Nanshan District Shenzhen 518057, China

Tel: +86-0755-8660-4900 Fax: +86-0755-8660-4958

Taiwan Office (Hsinchu) BCD Semiconductor (Taiwan) Company Limited 8F, No.176, Sec. 2, Gong-Dao 5th Road, East District HsinChu City 300, Taiwan, R.O.C Tel: +886-3-5160181, Fax: +886-3-5160181

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yishan Road, Shanghai 200233, China Tel: +021-6485-1491, Fax: +86-021-5450-0008

Taiwan Office (Taipei)

BCD Semiconductor (Taiwan) Company Limited 3F, No.17, Lane 171, Sec. 2, Jiu-Zong Rd., Nei-Hu Dist., Taipei(114), Taiwan, R.O.C Tel: +886-2-2656 2808

Fax: +886-2-2656-2806/26562950

BCD Semiconductor Corp. 48460 Kato Road, Fremont, CA 94538, USA

Tel: +1-510-668-1950 Fax: +1-510-668-1990

BCD Semiconductor Limited Korea office. Room 101-1112, Digital-Empire II, 486 Sin-dong,

Yeongtong-Gu, Suwon-city, Gyeonggi-do, Korea Tel: +82-31-695-8430

Downloaded from Arrow.com.